免费转换 ZIP 文件
专业的 ZIP 文件转换工具
将您的文件拖放到这里
或点击浏览文件
支持的格式
以高质量在所有主要文件格式之间转换
常见格式
ZIP Archive - universal compression format developed by Phil Katz (1989) supporting multiple compression methods. Built into Windows, macOS, and Linux. Uses DEFLATE algorithm providing good compression (40-60% reduction) with fast processing. Supports file encryption, split archives, and compression levels. Maximum compatibility across all platforms and devices. Perfect for file sharing, email attachments, web downloads, and general-purpose compression. Industry standard with virtually universal software support including built-in OS tools, mobile apps, and command-line utilities.
RAR Archive - proprietary format by Eugene Roshal (1993) offering superior compression ratios (10-20% better than ZIP) through advanced algorithms. Popular on Windows with WinRAR software. Supports recovery records for damaged archive repair, solid compression for better ratios, strong AES encryption, and split archives up to 8 exabytes. Excellent for long-term storage, large file collections, and backup scenarios. Common in software distribution and file sharing communities. Requires WinRAR or compatible software (not built into most systems).
7-Zip Archive - open-source format by Igor Pavlov (1999) providing the best compression ratio available (20-40% better than ZIP, 10-15% better than RAR). Uses LZMA and LZMA2 algorithms with strong AES-256 encryption. Supports huge file sizes (16 exabytes), multiple compression methods, solid compression, and self-extracting archives. Free from licensing restrictions and patent concerns. Perfect for maximizing storage efficiency, software distribution, and backup archives where size matters. Requires 7-Zip or compatible software but offers exceptional space savings.
Unix Formats
TAR Archive - Tape Archive format from Unix (1979) bundling multiple files and directories into single file without compression. Preserves file permissions, ownership, timestamps, and symbolic links critical for Unix systems. Often combined with compression (TAR.GZ, TAR.BZ2, TAR.XZ) for efficient distribution. Standard format for Linux software packages, system backups, and cross-platform file transfer. Essential for maintaining Unix file attributes. Works with streaming operations enabling network transfers and piping. Foundation of Unix/Linux backup and distribution systems.
GZIP/TGZ - GNU zip compression format (1992) using DEFLATE algorithm, standard compression for Linux and Unix systems. TGZ is TAR archive compressed with GZIP. Fast compression and decompression with moderate ratios (50-70% reduction for text). Single-file compression commonly paired with TAR for multi-file archives. Universal on Unix/Linux systems with built-in 'gzip' command. Perfect for log files, text data, Linux software distribution, and web server compression. Streaming-friendly enabling on-the-fly compression. Industry standard for Unix file compression since the 1990s.
BZIP2/TBZ2 - block-sorting compression format by Julian Seward (1996) offering better compression than GZIP (10-15% smaller) at the cost of slower processing. TBZ2 is TAR archive compressed with BZIP2. Uses Burrows-Wheeler transform achieving excellent ratios on text and source code. Popular for software distribution where size matters more than speed. Common in Linux package repositories and source code archives. Ideal for archival storage, software releases, and situations prioritizing compression over speed. Standard tool on most Unix/Linux systems.
XZ/TXZ - modern compression format (2009) using LZMA2 algorithm providing excellent compression ratios approaching 7Z quality. TXZ is TAR archive compressed with XZ. Superior to GZIP and BZIP2 with ratios similar to 7Z but as single-file stream. Becoming the new standard for Linux distributions and software packages. Supports multi-threading for faster processing. Perfect for large archives, software distribution, and modern Linux systems. Smaller download sizes for software packages while maintaining fast decompression. Default compression for many current Linux distributions.
{format_tar_7z_desc}
{format_tar_bz_desc}
{format_tar_lz_desc}
{format_tar_lzma_desc}
{format_tar_lzo_desc}
{format_tar_z_desc}
TGZ - TAR archive compressed with GZIP compression. Combines TAR's file bundling with GZIP's compression in single extension (.tgz instead of .tar.gz). Standard format for Linux software distribution and source code packages. Maintains Unix file permissions and attributes while reducing size 50-70%. Fast compression and decompression speeds. Universal compatibility on Unix/Linux systems. Perfect for software releases, backup archives, and cross-platform file transfer. Abbreviated form of TAR.GZ with identical functionality and structure.
TBZ2 - TAR archive compressed with BZIP2 compression. Better compression than TGZ (10-15% smaller) but slower processing. Uses Burrows-Wheeler block sorting for excellent text compression. Common in Linux distributions and software packages where size is critical. Maintains Unix file permissions and attributes. Perfect for source code distribution, archival storage, and bandwidth-limited transfers. Abbreviated form of TAR.BZ2 with identical functionality. Standard format for Gentoo Linux packages and large software archives.
TXZ - TAR archive compressed with XZ (LZMA2) compression. Modern format offering best compression ratios for TAR archives (better than TGZ and TBZ2). Fast decompression despite high compression. Supports multi-threading for improved performance. Becoming standard for Linux distributions (Arch, Slackware use TXZ). Maintains Unix permissions and symbolic links. Perfect for large software packages, system backups, and efficient storage. Abbreviated form of TAR.XZ representing the future of Unix archive compression.
LZMA/TAR.LZMA - Lempel-Ziv-Markov chain Algorithm compression format (2001) offering excellent compression ratios. TAR.LZMA combines TAR archiving with LZMA compression. Predecessor to XZ format using similar algorithm but older container format. Better compression than GZIP and BZIP2 but superseded by XZ/LZMA2. Still encountered in older Linux distributions and legacy archives. Slower compression than GZIP but better ratios (similar to XZ). Modern systems prefer TAR.XZ over TAR.LZMA. Legacy format for accessing older compressed archives from 2000s era.
LZO/TAR.LZO - Lempel-Ziv-Oberhumer compression format prioritizing speed over compression ratio. TAR.LZO is TAR archive compressed with LZO. Extremely fast compression and decompression (faster than GZIP) with moderate ratios (30-50% reduction). Popular in real-time applications, live systems, and scenarios requiring instant decompression. Used by some Linux kernels and embedded systems. Common in backup solutions prioritizing speed. Perfect for temporary compression, live CD/USB systems, and high-speed data transfer. Trade-off: larger files than GZIP/BZIP2/XZ but much faster processing.
Z/TAR.Z - Unix compress format from 1985 using LZW (Lempel-Ziv-Welch) algorithm. TAR.Z is TAR archive compressed with compress command. Historical Unix compression format predating GZIP. Patent issues (until 2003) led to GZIP replacing it. Legacy format with poor compression by modern standards. Rarely used today except in very old Unix systems and historical archives. If you encounter .Z or .tar.Z files, convert to modern formats (TAR.GZ, TAR.XZ) for better compression and wider support. Important for accessing ancient Unix archives from 1980s-1990s.
专业格式
ISO Image - ISO 9660 disk image format containing exact sector-by-sector copy of optical media (CD/DVD/Blu-ray). Standard format for distributing operating systems, software installations, and bootable media. Can be mounted as virtual drive without physical disc. Contains complete filesystem including boot sectors, metadata, and file structures. Essential for Linux distributions, system recovery media, and software archives. Used by burning software, virtual machines, and media servers. Universal standard with support in all major operating systems for mounting and burning.
Cabinet Archive - Microsoft's compression format for Windows installers and system files. Used extensively in Windows setup packages, driver installations, and system updates. Supports multiple compression algorithms (DEFLATE, LZX, Quantum), split archives, and digital signatures. Built into Windows with native extraction support. Common in software distribution for Windows applications, particularly older installers and Microsoft products. Maintains Windows-specific attributes and can store multiple files with folder structures. Part of Windows since 1996.
AR Archive - Unix archiver format (1970s) originally for creating library archives (.a files). Simple format storing multiple files with basic metadata (filename, modification time, permissions). Used primarily for static libraries in Unix development (.a extension). Foundation format for DEB packages (Debian packages are AR archives containing control and data). Minimal compression support (none by default). Essential for Unix library management and Debian package structure. Standard tool 'ar' included on all Unix/Linux systems. Simple and reliable for static file collections.
Debian Package - software package format for Debian, Ubuntu, and derivative Linux distributions. Contains compiled software, installation scripts, configuration files, and dependency metadata. Used by APT package manager (apt, apt-get commands). Actually a special AR archive containing control files and data archives. Essential format for Debian-based Linux software distribution. Includes pre/post-installation scripts, version management, and dependency resolution. Standard packaging for thousands of Ubuntu/Debian applications. Can be inspected and extracted as regular archive.
RPM Package - Red Hat Package Manager format for Red Hat, Fedora, CentOS, SUSE, and derivative Linux distributions. Contains compiled software, installation metadata, scripts, and dependency information. Used by YUM and DNF package managers. Includes GPG signature support for security verification. Standard for Red Hat Enterprise Linux ecosystem. Supports pre/post-installation scriptlets, file verification, and rollback capabilities. Essential format for RHEL-based Linux software distribution. Can be extracted as archive to inspect contents without installation.
JAR档案 - 基于ZIP压缩的Java档案格式,用于打包Java应用程序。包含编译后的Java类(.class文件)、应用程序资源和清单元数据。Java应用程序和库的标准分发格式。支持数字签名以进行代码验证。可以是可执行的(带有Main-Class清单的可运行JAR文件)。非常适合Java应用程序部署、库分发和插件系统。与ZIP工具兼容,但包含Java特定功能。自1996年以来,Java开发和部署的基本格式。
ARJ Archive - legacy DOS compression format by Robert Jung (1991). Popular in DOS and early Windows era for its good compression ratio and ability to create multi-volume archives. Supports encryption, damage protection, and archive comments. Largely obsolete today, replaced by ZIP, RAR, and 7Z. Still encountered in legacy systems and old software archives. Requires ARJ or compatible decompression software. Historical format important for accessing old DOS/Windows archives from 1990s. Better converted to modern formats for long-term accessibility.
LHA档案 - 1988年开发的日本压缩格式(也称为LZH),在日本和Amiga用户中极为流行。使用LZSS和LZHUF压缩算法,提供良好的压缩比。1990年代日本软件分发中常见。支持档案头、目录结构和文件属性。遗留格式,现在大多被现代替代品取代。在复古计算、日本软件档案和Amiga社区中仍然可以遇到。提取需要LHA/LZH兼容软件。对于访问日本和Amiga软件档案非常重要。
CPIO Archive - Copy In/Out archive format from Unix (1970s) for creating file archives. Simpler than TAR, often used for system backups and initramfs/initrd creation. Standard format for Linux initial RAM disk images. Supports multiple formats (binary, ASCII, CRC). Better handling of special files and device nodes than TAR. Common in system administration, bootloader configurations, and kernel initrd images. Universal on Unix/Linux systems. Essential for system-level archiving and embedded Linux systems. Works well for streaming operations.
如何转换文件
上传您的文件,选择输出格式,立即下载转换后的文件。我们的转换器支持批量转换并保持高质量。
常见问题
什么是ZIP文件,为什么它是最广泛使用的归档格式?
A ZIP file is a compressed archive format that bundles one or more files and optionally compresses them to reduce storage size. Introduced in 1989 by PKWARE, ZIP became the universal standard because it is supported natively by Windows, macOS, Linux desktops, mobile devices, cloud storage services, and nearly every file manager or operating system on the market. Its design prioritizes compatibility over maximum compression, making it ideal for everyday file sharing and distribution.
ZIP支持多种压缩方法,但最常用的是DEFLATE。虽然DEFLATE的压缩力度不如LZMA或RAR的专有方法,但它提供快速的压缩和提取,CPU使用率最低。这种速度、效率和可访问性之间的平衡使ZIP成为文档、图像、代码、备份和在线下载的首选格式。
ZIP的规范是开放且历史悠久的,允许成千上万的工具创建、提取和操作ZIP归档。因此,ZIP仍然是全球最通用和用户友好的归档格式。
为什么ZIP的压缩效果通常不如7Z或RAR等格式?
ZIP 通常使用 DEFLATE 算法,该算法优先考虑速度和广泛兼容性,而不是最大压缩。DEFLATE 对文本和重复数据有效,但对已压缩文件的效果较差。
ZIP 单独压缩文件,而不是使用固态压缩。这意味着跨多个文件的重复模式无法一起压缩,从而限制了潜在的大小减小。
标准 ZIP 存档不使用高级压缩功能,例如大字典大小、专用过滤器和多部分建模,这保持了简单性,但降低了其压缩比。
为什么 ZIP 文件的解压速度比其他归档类型快?
DEFLATE 解压缩速度极快且轻量,所需内存和 CPU 资源极少。
ZIP 将每个文件单独存储,允许在不扫描整个归档的情况下提取单个文件。
ZIP 格式的结构简单明了,使工具能够轻松定位文件并以最小的开销进行解压。
为什么有些 ZIP 文件无法打开或显示损坏错误?
中断的下载或部分传输通常会损坏 ZIP 的中央目录,导致解压工具报告错误。
使用不受支持的压缩方法(如 LZMA、PPMd 或 BZIP2)的 ZIP 文件可能无法在旧工具或内置操作系统提取器中打开。
文件系统损坏、不完整的上传或云同步冲突可能会破坏 ZIP 结构并导致需要修复的消息。
为什么有些 ZIP 文件的大小比原始数据大?
已经压缩的文件,如 JPEG、MP4、ZIP、RAR 或 PDF,包含无法进一步压缩的熵压缩数据。
ZIP 单独压缩文件,因此无法利用跨文件的冗余,降低了效率。
使用 'store' 模式(无压缩)会导致 ZIP 的大小与输入文件相同,通常用于速度或兼容性。
ZIP 格式的安全性如何?
传统的 ZIP 加密(ZipCrypto)在现代标准下较弱,使用专用工具可以快速破解。
现代 ZIP 工具支持 AES-256 加密,使用长且复杂的密码时非常强大和安全。
ZIP 泄露文件元数据,例如文件名,除非启用头部加密,这意味着隐私取决于加密设置。
为什么有些 ZIP 文件即使没有设置密码也会要求输入密码?
某些归档文件部分加密,这意味着文件名或内部特定文件需要密码,而其他文件则不需要。
格式错误或损坏的头部可能导致解压工具错误地将 ZIP 视为已加密。
云下载的 ZIP 有时会被电子邮件平台或文件安全系统自动加密。
为什么 ZIP 在不同操作系统上表现不同?
Windows uses its own built-in ZIP handler, which supports only basic DEFLATE compression and lacks support for some modern extensions.
macOS and Linux also include ZIP utilities but treat filenames, permissions, and symlinks differently.
Advanced ZIP features—AES encryption, ZIP64, non-DEFLATE methods—may require third-party tools like 7-Zip or WinRAR for full compatibility.
ZIP 文件可以修复吗?
是的——ZIP 修复工具可以重建缺失的中央目录条目或恢复仍然完好的单个文件。
如果文件被分割成多个部分,缺失的部分将导致错误,但仍可能进行部分恢复。
某些云服务会保留文件的先前版本,允许回滚到最后一个未损坏的 ZIP。
为什么 ZIP 是电子邮件附件和下载的默认格式?
ZIP 是通用格式,可以在不安装任何额外软件的情况下打开。
它保留文件夹结构,并允许将相关文件打包成一个可分发的包。
ZIP 避免了与专有格式(如 RAR)或高级格式(如 7Z)相关的兼容性问题。
为什么大型 ZIP 文件需要 ZIP64 支持?
标准 ZIP 有严格的限制:每个文件最大 4 GB,文件数量限制为 65,535。
ZIP64 扩展了这些限制,以支持多 TB 的归档和数百万个文件。
旧版提取器不支持 ZIP64,导致打开非常大的归档时出现错误。
为什么 ZIP 归档在软件开发中被使用?
ZIP 的结构易于检查、自动化和通过脚本、CI/CD 管道和部署工具提取。
它非常适合打包源代码、配置包和应用程序分发。
ZIP 在许多技术内部使用——如 JAR、APK、DOCX 和 ODT——因为其结构是模块化和可扩展的。
ZIP 支持流式或即时压缩吗?
是的——ZIP 可以从输入流创建,允许通过压缩工具传输数据而无需中间文件。
流式处理使得在脚本中实时归档日志、备份或临时数据成为可能。
然而,对压缩文件的随机访问需要完成的中央目录,因此流式处理存在限制。
ZIP 与现代格式相比过时吗?
由于普遍支持、易用性和稳定的规范,ZIP 仍然高度相关。
虽然像 7Z 或 RAR 这样的格式可能提供更好的压缩,但 ZIP 的速度和兼容性使其在日常使用中更为实用。
ZIP64 和 AES 加密的引入确保 ZIP 继续与现代需求发展。
ZIP 应该是您的主要归档格式吗?
是的——如果您的优先考虑是兼容性、便利性和在所有平台上的快速提取。
ZIP 文件非常适合共享文件、在线发布下载、发送电子邮件附件和组织文档。
如果您需要最大压缩或高级备份完整性,7Z 或 RAR 等格式可能更好——否则 ZIP 仍然是最实用的选择。