免费转换 RPM 文件

专业的 RPM 文件转换工具

将您的文件拖放到这里

或点击浏览文件

最大文件大小:100MB
10M+ 已转换文件
100% 永久免费
256位 安全加密

支持的格式

以高质量在所有主要文件格式之间转换

常见格式

ZIP

ZIP Archive - universal compression format developed by Phil Katz (1989) supporting multiple compression methods. Built into Windows, macOS, and Linux. Uses DEFLATE algorithm providing good compression (40-60% reduction) with fast processing. Supports file encryption, split archives, and compression levels. Maximum compatibility across all platforms and devices. Perfect for file sharing, email attachments, web downloads, and general-purpose compression. Industry standard with virtually universal software support including built-in OS tools, mobile apps, and command-line utilities.

RAR

RAR Archive - proprietary format by Eugene Roshal (1993) offering superior compression ratios (10-20% better than ZIP) through advanced algorithms. Popular on Windows with WinRAR software. Supports recovery records for damaged archive repair, solid compression for better ratios, strong AES encryption, and split archives up to 8 exabytes. Excellent for long-term storage, large file collections, and backup scenarios. Common in software distribution and file sharing communities. Requires WinRAR or compatible software (not built into most systems).

7Z

7-Zip Archive - open-source format by Igor Pavlov (1999) providing the best compression ratio available (20-40% better than ZIP, 10-15% better than RAR). Uses LZMA and LZMA2 algorithms with strong AES-256 encryption. Supports huge file sizes (16 exabytes), multiple compression methods, solid compression, and self-extracting archives. Free from licensing restrictions and patent concerns. Perfect for maximizing storage efficiency, software distribution, and backup archives where size matters. Requires 7-Zip or compatible software but offers exceptional space savings.

Unix Formats

TAR

TAR Archive - Tape Archive format from Unix (1979) bundling multiple files and directories into single file without compression. Preserves file permissions, ownership, timestamps, and symbolic links critical for Unix systems. Often combined with compression (TAR.GZ, TAR.BZ2, TAR.XZ) for efficient distribution. Standard format for Linux software packages, system backups, and cross-platform file transfer. Essential for maintaining Unix file attributes. Works with streaming operations enabling network transfers and piping. Foundation of Unix/Linux backup and distribution systems.

GZ/TGZ

GZIP/TGZ - GNU zip compression format (1992) using DEFLATE algorithm, standard compression for Linux and Unix systems. TGZ is TAR archive compressed with GZIP. Fast compression and decompression with moderate ratios (50-70% reduction for text). Single-file compression commonly paired with TAR for multi-file archives. Universal on Unix/Linux systems with built-in 'gzip' command. Perfect for log files, text data, Linux software distribution, and web server compression. Streaming-friendly enabling on-the-fly compression. Industry standard for Unix file compression since the 1990s.

BZ2/TBZ2

BZIP2/TBZ2 - block-sorting compression format by Julian Seward (1996) offering better compression than GZIP (10-15% smaller) at the cost of slower processing. TBZ2 is TAR archive compressed with BZIP2. Uses Burrows-Wheeler transform achieving excellent ratios on text and source code. Popular for software distribution where size matters more than speed. Common in Linux package repositories and source code archives. Ideal for archival storage, software releases, and situations prioritizing compression over speed. Standard tool on most Unix/Linux systems.

XZ/TXZ

XZ/TXZ - modern compression format (2009) using LZMA2 algorithm providing excellent compression ratios approaching 7Z quality. TXZ is TAR archive compressed with XZ. Superior to GZIP and BZIP2 with ratios similar to 7Z but as single-file stream. Becoming the new standard for Linux distributions and software packages. Supports multi-threading for faster processing. Perfect for large archives, software distribution, and modern Linux systems. Smaller download sizes for software packages while maintaining fast decompression. Default compression for many current Linux distributions.

TAR.7Z

{format_tar_7z_desc}

TAR.BZ

{format_tar_bz_desc}

TAR.LZ

{format_tar_lz_desc}

TAR.LZMA

{format_tar_lzma_desc}

TAR.LZO

{format_tar_lzo_desc}

TAR.Z

{format_tar_z_desc}

TGZ

TGZ - TAR archive compressed with GZIP compression. Combines TAR's file bundling with GZIP's compression in single extension (.tgz instead of .tar.gz). Standard format for Linux software distribution and source code packages. Maintains Unix file permissions and attributes while reducing size 50-70%. Fast compression and decompression speeds. Universal compatibility on Unix/Linux systems. Perfect for software releases, backup archives, and cross-platform file transfer. Abbreviated form of TAR.GZ with identical functionality and structure.

TBZ2

TBZ2 - TAR archive compressed with BZIP2 compression. Better compression than TGZ (10-15% smaller) but slower processing. Uses Burrows-Wheeler block sorting for excellent text compression. Common in Linux distributions and software packages where size is critical. Maintains Unix file permissions and attributes. Perfect for source code distribution, archival storage, and bandwidth-limited transfers. Abbreviated form of TAR.BZ2 with identical functionality. Standard format for Gentoo Linux packages and large software archives.

TXZ

TXZ - TAR archive compressed with XZ (LZMA2) compression. Modern format offering best compression ratios for TAR archives (better than TGZ and TBZ2). Fast decompression despite high compression. Supports multi-threading for improved performance. Becoming standard for Linux distributions (Arch, Slackware use TXZ). Maintains Unix permissions and symbolic links. Perfect for large software packages, system backups, and efficient storage. Abbreviated form of TAR.XZ representing the future of Unix archive compression.

LZMA

LZMA/TAR.LZMA - Lempel-Ziv-Markov chain Algorithm compression format (2001) offering excellent compression ratios. TAR.LZMA combines TAR archiving with LZMA compression. Predecessor to XZ format using similar algorithm but older container format. Better compression than GZIP and BZIP2 but superseded by XZ/LZMA2. Still encountered in older Linux distributions and legacy archives. Slower compression than GZIP but better ratios (similar to XZ). Modern systems prefer TAR.XZ over TAR.LZMA. Legacy format for accessing older compressed archives from 2000s era.

LZO

LZO/TAR.LZO - Lempel-Ziv-Oberhumer compression format prioritizing speed over compression ratio. TAR.LZO is TAR archive compressed with LZO. Extremely fast compression and decompression (faster than GZIP) with moderate ratios (30-50% reduction). Popular in real-time applications, live systems, and scenarios requiring instant decompression. Used by some Linux kernels and embedded systems. Common in backup solutions prioritizing speed. Perfect for temporary compression, live CD/USB systems, and high-speed data transfer. Trade-off: larger files than GZIP/BZIP2/XZ but much faster processing.

Z

Z/TAR.Z - Unix compress format from 1985 using LZW (Lempel-Ziv-Welch) algorithm. TAR.Z is TAR archive compressed with compress command. Historical Unix compression format predating GZIP. Patent issues (until 2003) led to GZIP replacing it. Legacy format with poor compression by modern standards. Rarely used today except in very old Unix systems and historical archives. If you encounter .Z or .tar.Z files, convert to modern formats (TAR.GZ, TAR.XZ) for better compression and wider support. Important for accessing ancient Unix archives from 1980s-1990s.

专业格式

ISO

ISO Image - ISO 9660 disk image format containing exact sector-by-sector copy of optical media (CD/DVD/Blu-ray). Standard format for distributing operating systems, software installations, and bootable media. Can be mounted as virtual drive without physical disc. Contains complete filesystem including boot sectors, metadata, and file structures. Essential for Linux distributions, system recovery media, and software archives. Used by burning software, virtual machines, and media servers. Universal standard with support in all major operating systems for mounting and burning.

CAB

Cabinet Archive - Microsoft's compression format for Windows installers and system files. Used extensively in Windows setup packages, driver installations, and system updates. Supports multiple compression algorithms (DEFLATE, LZX, Quantum), split archives, and digital signatures. Built into Windows with native extraction support. Common in software distribution for Windows applications, particularly older installers and Microsoft products. Maintains Windows-specific attributes and can store multiple files with folder structures. Part of Windows since 1996.

AR

AR Archive - Unix archiver format (1970s) originally for creating library archives (.a files). Simple format storing multiple files with basic metadata (filename, modification time, permissions). Used primarily for static libraries in Unix development (.a extension). Foundation format for DEB packages (Debian packages are AR archives containing control and data). Minimal compression support (none by default). Essential for Unix library management and Debian package structure. Standard tool 'ar' included on all Unix/Linux systems. Simple and reliable for static file collections.

DEB

Debian Package - software package format for Debian, Ubuntu, and derivative Linux distributions. Contains compiled software, installation scripts, configuration files, and dependency metadata. Used by APT package manager (apt, apt-get commands). Actually a special AR archive containing control files and data archives. Essential format for Debian-based Linux software distribution. Includes pre/post-installation scripts, version management, and dependency resolution. Standard packaging for thousands of Ubuntu/Debian applications. Can be inspected and extracted as regular archive.

RPM

RPM Package - Red Hat Package Manager format for Red Hat, Fedora, CentOS, SUSE, and derivative Linux distributions. Contains compiled software, installation metadata, scripts, and dependency information. Used by YUM and DNF package managers. Includes GPG signature support for security verification. Standard for Red Hat Enterprise Linux ecosystem. Supports pre/post-installation scriptlets, file verification, and rollback capabilities. Essential format for RHEL-based Linux software distribution. Can be extracted as archive to inspect contents without installation.

JAR

JAR档案 - 基于ZIP压缩的Java档案格式,用于打包Java应用程序。包含编译后的Java类(.class文件)、应用程序资源和清单元数据。Java应用程序和库的标准分发格式。支持数字签名以进行代码验证。可以是可执行的(带有Main-Class清单的可运行JAR文件)。非常适合Java应用程序部署、库分发和插件系统。与ZIP工具兼容,但包含Java特定功能。自1996年以来,Java开发和部署的基本格式。

ARJ

ARJ Archive - legacy DOS compression format by Robert Jung (1991). Popular in DOS and early Windows era for its good compression ratio and ability to create multi-volume archives. Supports encryption, damage protection, and archive comments. Largely obsolete today, replaced by ZIP, RAR, and 7Z. Still encountered in legacy systems and old software archives. Requires ARJ or compatible decompression software. Historical format important for accessing old DOS/Windows archives from 1990s. Better converted to modern formats for long-term accessibility.

LHA

LHA档案 - 1988年开发的日本压缩格式(也称为LZH),在日本和Amiga用户中极为流行。使用LZSS和LZHUF压缩算法,提供良好的压缩比。1990年代日本软件分发中常见。支持档案头、目录结构和文件属性。遗留格式,现在大多被现代替代品取代。在复古计算、日本软件档案和Amiga社区中仍然可以遇到。提取需要LHA/LZH兼容软件。对于访问日本和Amiga软件档案非常重要。

CPIO

CPIO Archive - Copy In/Out archive format from Unix (1970s) for creating file archives. Simpler than TAR, often used for system backups and initramfs/initrd creation. Standard format for Linux initial RAM disk images. Supports multiple formats (binary, ASCII, CRC). Better handling of special files and device nodes than TAR. Common in system administration, bootloader configurations, and kernel initrd images. Universal on Unix/Linux systems. Essential for system-level archiving and embedded Linux systems. Works well for streaming operations.

如何转换文件

上传您的文件,选择输出格式,立即下载转换后的文件。我们的转换器支持批量转换并保持高质量。

常见问题

What is an RPM file and why is it the core packaging format in Red Hat–based Linux distributions?

An RPM (Red Hat Package Manager) file is a structured software package format used by Fedora, RHEL, CentOS, openSUSE, AlmaLinux, Rocky Linux, and many other enterprise-focused Linux distributions. It bundles compiled binaries, configuration files, dependencies, metadata, and maintainer scripts into a single installable archive managed by the RPM system.

RPM 旨在实现企业稳定性、确定性行为和严格版本控制,使其非常适合在服务器和企业环境中进行大规模部署。

Its combination of strong metadata, transaction safety, and integration with tools like YUM, DNF, and Zypper keeps RPM central to the Linux server ecosystem.

为什么 RPM 将包元数据与实际程序文件分开?

RPM 的元数据包括版本控制、依赖关系、变更日志、许可证信息、文件所有权规则、安装/卸载脚本和文件哈希。这使得 Red Hat 风格的包管理器能够在不解压缩包的情况下分析包。

分离元数据确保更快的依赖关系解析、更可靠的系统审计以及对更新和回滚的精确控制。

这种设计使得RPM非常适合企业级基础设施,在这些基础设施中,一致性和可审计性至关重要。

为什么有些RPM包在文件看似有效的情况下仍然无法安装?

RPM严格执行依赖关系。如果所需的库或版本缺失、不兼容或被其他软件包替代,安装将失败以保护系统完整性。

SELinux policies or file ownership conflicts can also block installation if the package attempts to overwrite protected paths.

根据系统安全策略,未签名或签名不正确的RPM可能会被拒绝。

为什么RPM比DEB格式更频繁地使用GPG签名?

红帽生态系统非常重视企业安全、供应链保护和可验证的软件来源。

RPM包通常包含嵌入的GPG签名,当系统策略仅要求可信来源时,包管理器会拒绝未签名的软件包。

在可能导致灾难性后果的环境中,强有力的签名执行是必不可少的。

为什么RPM在大型服务器基础设施中更受欢迎?

RPM支持可靠的事务,这意味着安装和移除要么完全完成,要么干净地回滚。

它与Ansible、Satellite、Spacewalk和基于Kubernetes的部署等自动化工具无缝集成。

其可预测的行为和强大的版本锁定能力非常适合高正常运行时间的服务器群。

手动提取RPM文件是否安全?

是的,像`rpm2cpio`或`cpio`这样的工具可以提取RPM内容,允许在不安装的情况下进行检查。

然而,手动提取会绕过依赖检查、脚本执行和系统集成,这意味着应用程序可能无法正常运行。

手动提取最适合用于恢复、逆向工程或检查软件包中的修改。

为什么RPM包包含安装前和安装后脚本?

脚本执行诸如更新系统缓存、设置文件权限、启用服务或迁移配置文件等基本任务。

因为RPM通常用于后端和服务器软件,脚本确保正确设置,而无需手动管理步骤。

如果RPM来自不可信的来源,这些强大的脚本也可能引入风险。

为什么不同的基于RPM的发行版有时需要不同的RPM文件?

RPMs are tightly linked to system libraries, compiler versions, filesystem layouts, and SELinux policies that differ between distros.

为Fedora构建的软件包可能使用比为RHEL或openSUSE构建的软件包更新的系统库,从而导致不兼容。

供应商特定的打包政策通常要求为每个目标发行版单独构建。

RPM可以转换为其他格式,如DEB吗?

是的,像`alien`这样的工具可以将RPM转换为DEB或TGZ包。

转换后的包通常会丢失特定于发行版的元数据、依赖关系细节和脚本行为,可能导致运行时问题。

本地打包始终优于适当的集成和稳定性。

RPM包支持高级压缩吗?

是的,RPM有效载荷可能根据发行版和RPM版本使用gzip、bzip2、xz或zstd压缩。

更新的红帽和Fedora系统更倾向于使用zstd,因为它在压缩比和速度之间具有出色的平衡。

压缩会影响包的大小和解压缩速度,但不会改变RPM安装软件的方式。

为什么RPM存储文件哈希和所有权信息?

RPM包括校验和和文件所有权元数据,以检测损坏、验证完整性并防止未经授权的修改。

像`rpm -V`这样的命令允许管理员根据已安装的软件包清单验证系统完整性。

这使得RPM在注重安全和企业环境中极具价值。

Why do RPM installations sometimes trigger SELinux warnings?

SELinux enforces mandatory access control policies that govern what files, services, and processes may do.

If an RPM installs files with incorrect labels or attempts unauthorized operations, SELinux can block or warn about them.

Properly built RPMs include SELinux file context rules to ensure seamless installation.

为什么RPM包强制执行严格的文件系统路径?

大多数基于RPM的发行版遵循文件系统层次标准(FHS),该标准要求二进制文件、库、日志和配置文件的一致位置。

严格的路径政策确保软件包之间的兼容性、更容易的系统维护和可预测的升级行为。

这些做法使得在服务器环境中进行迁移、集群和自动化变得更加容易。

RPM可以安装任何类型的应用程序吗?

是的,RPM可以分发CLI工具、GUI、库、内核模块、服务器、固件和企业级应用程序。

Many major commercial Linux apps distribute RPM packages due to their strong integration with RHEL and SUSE ecosystems.

其灵活性和强大的元数据使得RPM适用于几乎任何类型的软件。

您应该手动安装RPM包还是通过系统包管理器?

使用包管理器(DNF、YUM、Zypper)更安全,因为依赖关系、签名和版本冲突会自动管理。

使用`rpm -i`手动安装RPM会绕过依赖检查,增加系统损坏的风险。

出于安全性和可靠性考虑,除非手动安装RPM不可避免,否则始终优先选择基于仓库的安装。