免费转换 LHA 文件

专业的 LHA 文件转换工具

将您的文件拖放到这里

或点击浏览文件

最大文件大小:100MB
10M+ 已转换文件
100% 永久免费
256位 安全加密

支持的格式

以高质量在所有主要文件格式之间转换

常见格式

ZIP

ZIP Archive - universal compression format developed by Phil Katz (1989) supporting multiple compression methods. Built into Windows, macOS, and Linux. Uses DEFLATE algorithm providing good compression (40-60% reduction) with fast processing. Supports file encryption, split archives, and compression levels. Maximum compatibility across all platforms and devices. Perfect for file sharing, email attachments, web downloads, and general-purpose compression. Industry standard with virtually universal software support including built-in OS tools, mobile apps, and command-line utilities.

RAR

RAR Archive - proprietary format by Eugene Roshal (1993) offering superior compression ratios (10-20% better than ZIP) through advanced algorithms. Popular on Windows with WinRAR software. Supports recovery records for damaged archive repair, solid compression for better ratios, strong AES encryption, and split archives up to 8 exabytes. Excellent for long-term storage, large file collections, and backup scenarios. Common in software distribution and file sharing communities. Requires WinRAR or compatible software (not built into most systems).

7Z

7-Zip Archive - open-source format by Igor Pavlov (1999) providing the best compression ratio available (20-40% better than ZIP, 10-15% better than RAR). Uses LZMA and LZMA2 algorithms with strong AES-256 encryption. Supports huge file sizes (16 exabytes), multiple compression methods, solid compression, and self-extracting archives. Free from licensing restrictions and patent concerns. Perfect for maximizing storage efficiency, software distribution, and backup archives where size matters. Requires 7-Zip or compatible software but offers exceptional space savings.

Unix Formats

TAR

TAR Archive - Tape Archive format from Unix (1979) bundling multiple files and directories into single file without compression. Preserves file permissions, ownership, timestamps, and symbolic links critical for Unix systems. Often combined with compression (TAR.GZ, TAR.BZ2, TAR.XZ) for efficient distribution. Standard format for Linux software packages, system backups, and cross-platform file transfer. Essential for maintaining Unix file attributes. Works with streaming operations enabling network transfers and piping. Foundation of Unix/Linux backup and distribution systems.

GZ/TGZ

GZIP/TGZ - GNU zip compression format (1992) using DEFLATE algorithm, standard compression for Linux and Unix systems. TGZ is TAR archive compressed with GZIP. Fast compression and decompression with moderate ratios (50-70% reduction for text). Single-file compression commonly paired with TAR for multi-file archives. Universal on Unix/Linux systems with built-in 'gzip' command. Perfect for log files, text data, Linux software distribution, and web server compression. Streaming-friendly enabling on-the-fly compression. Industry standard for Unix file compression since the 1990s.

BZ2/TBZ2

BZIP2/TBZ2 - block-sorting compression format by Julian Seward (1996) offering better compression than GZIP (10-15% smaller) at the cost of slower processing. TBZ2 is TAR archive compressed with BZIP2. Uses Burrows-Wheeler transform achieving excellent ratios on text and source code. Popular for software distribution where size matters more than speed. Common in Linux package repositories and source code archives. Ideal for archival storage, software releases, and situations prioritizing compression over speed. Standard tool on most Unix/Linux systems.

XZ/TXZ

XZ/TXZ - modern compression format (2009) using LZMA2 algorithm providing excellent compression ratios approaching 7Z quality. TXZ is TAR archive compressed with XZ. Superior to GZIP and BZIP2 with ratios similar to 7Z but as single-file stream. Becoming the new standard for Linux distributions and software packages. Supports multi-threading for faster processing. Perfect for large archives, software distribution, and modern Linux systems. Smaller download sizes for software packages while maintaining fast decompression. Default compression for many current Linux distributions.

TAR.7Z

{format_tar_7z_desc}

TAR.BZ

{format_tar_bz_desc}

TAR.LZ

{format_tar_lz_desc}

TAR.LZMA

{format_tar_lzma_desc}

TAR.LZO

{format_tar_lzo_desc}

TAR.Z

{format_tar_z_desc}

TGZ

TGZ - TAR archive compressed with GZIP compression. Combines TAR's file bundling with GZIP's compression in single extension (.tgz instead of .tar.gz). Standard format for Linux software distribution and source code packages. Maintains Unix file permissions and attributes while reducing size 50-70%. Fast compression and decompression speeds. Universal compatibility on Unix/Linux systems. Perfect for software releases, backup archives, and cross-platform file transfer. Abbreviated form of TAR.GZ with identical functionality and structure.

TBZ2

TBZ2 - TAR archive compressed with BZIP2 compression. Better compression than TGZ (10-15% smaller) but slower processing. Uses Burrows-Wheeler block sorting for excellent text compression. Common in Linux distributions and software packages where size is critical. Maintains Unix file permissions and attributes. Perfect for source code distribution, archival storage, and bandwidth-limited transfers. Abbreviated form of TAR.BZ2 with identical functionality. Standard format for Gentoo Linux packages and large software archives.

TXZ

TXZ - TAR archive compressed with XZ (LZMA2) compression. Modern format offering best compression ratios for TAR archives (better than TGZ and TBZ2). Fast decompression despite high compression. Supports multi-threading for improved performance. Becoming standard for Linux distributions (Arch, Slackware use TXZ). Maintains Unix permissions and symbolic links. Perfect for large software packages, system backups, and efficient storage. Abbreviated form of TAR.XZ representing the future of Unix archive compression.

LZMA

LZMA/TAR.LZMA - Lempel-Ziv-Markov chain Algorithm compression format (2001) offering excellent compression ratios. TAR.LZMA combines TAR archiving with LZMA compression. Predecessor to XZ format using similar algorithm but older container format. Better compression than GZIP and BZIP2 but superseded by XZ/LZMA2. Still encountered in older Linux distributions and legacy archives. Slower compression than GZIP but better ratios (similar to XZ). Modern systems prefer TAR.XZ over TAR.LZMA. Legacy format for accessing older compressed archives from 2000s era.

LZO

LZO/TAR.LZO - Lempel-Ziv-Oberhumer compression format prioritizing speed over compression ratio. TAR.LZO is TAR archive compressed with LZO. Extremely fast compression and decompression (faster than GZIP) with moderate ratios (30-50% reduction). Popular in real-time applications, live systems, and scenarios requiring instant decompression. Used by some Linux kernels and embedded systems. Common in backup solutions prioritizing speed. Perfect for temporary compression, live CD/USB systems, and high-speed data transfer. Trade-off: larger files than GZIP/BZIP2/XZ but much faster processing.

Z

Z/TAR.Z - Unix compress format from 1985 using LZW (Lempel-Ziv-Welch) algorithm. TAR.Z is TAR archive compressed with compress command. Historical Unix compression format predating GZIP. Patent issues (until 2003) led to GZIP replacing it. Legacy format with poor compression by modern standards. Rarely used today except in very old Unix systems and historical archives. If you encounter .Z or .tar.Z files, convert to modern formats (TAR.GZ, TAR.XZ) for better compression and wider support. Important for accessing ancient Unix archives from 1980s-1990s.

专业格式

ISO

ISO Image - ISO 9660 disk image format containing exact sector-by-sector copy of optical media (CD/DVD/Blu-ray). Standard format for distributing operating systems, software installations, and bootable media. Can be mounted as virtual drive without physical disc. Contains complete filesystem including boot sectors, metadata, and file structures. Essential for Linux distributions, system recovery media, and software archives. Used by burning software, virtual machines, and media servers. Universal standard with support in all major operating systems for mounting and burning.

CAB

Cabinet Archive - Microsoft's compression format for Windows installers and system files. Used extensively in Windows setup packages, driver installations, and system updates. Supports multiple compression algorithms (DEFLATE, LZX, Quantum), split archives, and digital signatures. Built into Windows with native extraction support. Common in software distribution for Windows applications, particularly older installers and Microsoft products. Maintains Windows-specific attributes and can store multiple files with folder structures. Part of Windows since 1996.

AR

AR Archive - Unix archiver format (1970s) originally for creating library archives (.a files). Simple format storing multiple files with basic metadata (filename, modification time, permissions). Used primarily for static libraries in Unix development (.a extension). Foundation format for DEB packages (Debian packages are AR archives containing control and data). Minimal compression support (none by default). Essential for Unix library management and Debian package structure. Standard tool 'ar' included on all Unix/Linux systems. Simple and reliable for static file collections.

DEB

Debian Package - software package format for Debian, Ubuntu, and derivative Linux distributions. Contains compiled software, installation scripts, configuration files, and dependency metadata. Used by APT package manager (apt, apt-get commands). Actually a special AR archive containing control files and data archives. Essential format for Debian-based Linux software distribution. Includes pre/post-installation scripts, version management, and dependency resolution. Standard packaging for thousands of Ubuntu/Debian applications. Can be inspected and extracted as regular archive.

RPM

RPM Package - Red Hat Package Manager format for Red Hat, Fedora, CentOS, SUSE, and derivative Linux distributions. Contains compiled software, installation metadata, scripts, and dependency information. Used by YUM and DNF package managers. Includes GPG signature support for security verification. Standard for Red Hat Enterprise Linux ecosystem. Supports pre/post-installation scriptlets, file verification, and rollback capabilities. Essential format for RHEL-based Linux software distribution. Can be extracted as archive to inspect contents without installation.

JAR

JAR档案 - 基于ZIP压缩的Java档案格式,用于打包Java应用程序。包含编译后的Java类(.class文件)、应用程序资源和清单元数据。Java应用程序和库的标准分发格式。支持数字签名以进行代码验证。可以是可执行的(带有Main-Class清单的可运行JAR文件)。非常适合Java应用程序部署、库分发和插件系统。与ZIP工具兼容,但包含Java特定功能。自1996年以来,Java开发和部署的基本格式。

ARJ

ARJ Archive - legacy DOS compression format by Robert Jung (1991). Popular in DOS and early Windows era for its good compression ratio and ability to create multi-volume archives. Supports encryption, damage protection, and archive comments. Largely obsolete today, replaced by ZIP, RAR, and 7Z. Still encountered in legacy systems and old software archives. Requires ARJ or compatible decompression software. Historical format important for accessing old DOS/Windows archives from 1990s. Better converted to modern formats for long-term accessibility.

LHA

LHA档案 - 1988年开发的日本压缩格式(也称为LZH),在日本和Amiga用户中极为流行。使用LZSS和LZHUF压缩算法,提供良好的压缩比。1990年代日本软件分发中常见。支持档案头、目录结构和文件属性。遗留格式,现在大多被现代替代品取代。在复古计算、日本软件档案和Amiga社区中仍然可以遇到。提取需要LHA/LZH兼容软件。对于访问日本和Amiga软件档案非常重要。

CPIO

CPIO Archive - Copy In/Out archive format from Unix (1970s) for creating file archives. Simpler than TAR, often used for system backups and initramfs/initrd creation. Standard format for Linux initial RAM disk images. Supports multiple formats (binary, ASCII, CRC). Better handling of special files and device nodes than TAR. Common in system administration, bootloader configurations, and kernel initrd images. Universal on Unix/Linux systems. Essential for system-level archiving and embedded Linux systems. Works well for streaming operations.

如何转换文件

上传您的文件,选择输出格式,立即下载转换后的文件。我们的转换器支持批量转换并保持高质量。

常见问题

什么是 LHA 文件,为什么它在经典计算中如此广泛使用?

An LHA file (also seen as LZH) is a compressed archive created using the LHarc/LHA compression algorithm, extremely popular in the late 1980s and 1990s on MS-DOS, Amiga, and early Windows systems. It offered strong compression, high reliability, and simple command-line usage, making it a preferred format for distributing software, game mods, and shareware.

LHA was especially favored in Japan, where many PC-98, Windows, and gaming-related applications were exclusively distributed in LZH format. This regional popularity kept LHA relevant long after ZIP became global mainstream.

尽管今天大多被 ZIP、RAR 和 7Z 取代,但 LHA 对于复古计算、游戏保存和解压缩仍使用 LZH 压缩的旧软件档案至关重要。

为什么 LHA 的压缩效果比早期的 ZIP 工具更好?

LHA 的 LH5 和 LH6 压缩方法使用了激进的 LZSS + 哈夫曼编码,超越了早期的 PKZIP 版本,特别是在可执行文件、文本和经典游戏数据方面。

其字典和块处理策略在当时更为先进,能够在不耗费过多处理时间的情况下实现更小的体积。

LHA 还允许微调压缩模式,让用户根据需求选择更快或更紧凑的压缩。

为什么 LHA 文件在现代硬件上提取缓慢?

LHA 的算法是为 1980 年代的 CPU 优化的,无法利用现代多线程或硬件加速。

某些 LZH 变体需要解压缩长链的编码块,这使得提取速度比更现代的格式如 7Z 或 Zstandard 慢。

现代工具使用的兼容层可能没有完全优化,在提取过程中增加了额外的开销。

为什么某些 LHA 文件会出现 '未知方法' 错误?

不同的 LHA 版本引入了额外的压缩方法,如 LH7 和 LH8,并非所有提取器都支持这些方法。

一些在日本创建的档案使用了修改或专有的 LZH 变体,导致与标准工具不兼容。

损坏的头部或不完整的下载可能导致提取器完全错误识别压缩方法。

为什么某些 LHA 档案比预期的要大?

JPEG、MP4 和 WAV 等多媒体文件已经被压缩,无法在 LHA 的算法下进一步缩小。

较旧的可执行文件和二进制文件可能压缩效果良好,但现代二进制数据通常包含不太适合 LZSS 压缩的模式。

LHA 缺乏在更新格式如 7Z 中看到的高级建模和字典改进,因此不同内容类型的结果差异很大。

LHA 对于受保护的档案是否足够安全?

LHA 包含密码保护,但其加密强度极为过时,容易受到现代暴力破解攻击。

由于其加密系统从未设计为符合现代安全标准,因此不应用于敏感数据。

为了安全起见,在存储机密材料之前,将 LHA 文件包装在外部加密中(例如 GPG 或加密 ZIP 容器)中。

为什么 LHA 有时会在没有警告的情况下覆盖文件?

经典的LHA工具遵循DOS约定,在提取过程中自动替换文件,除非另有指示。

现代提取工具模仿这种传统行为以保持兼容性,如果提取路径没有隔离,可能会导致意外覆盖。

将LHA档案提取到空目录中,或使用阻止覆盖的选项以避免数据丢失。

为什么LHA文件在不同系统上表现不同?

Windows, Linux, and macOS extraction tools differ in how they handle LZH metadata, filenames, and multi-byte Japanese text encodings.

一些LHA档案依赖于Shift-JIS编码,在期望UTF-8的系统上可能会出现损坏。

较旧的LHA工具保留了DOS文件属性,这些属性可能无法在现代POSIX文件系统上干净地映射。

LHA档案可以修复吗?

LHA包含CRC检查,但恢复选项有限,导致严重损坏难以修复。

一些工具尝试从损坏的档案中进行部分提取,但成功率因损坏发生的位置而异。

如果头部损坏,恢复将变得更加困难,因为LHA依赖于严格的元数据结构。

Why did LHA become a standard in Japanese Windows applications?

LHA与日本实用工具、BBS系统和PC-98平台广泛分发,成为日本早期PC时代的文化默认。

日本的政府和企业软件发布要求或推荐LZH,强化了其多年的主导地位。

即使现在,许多日本复古档案、游戏补丁和保存网站仍继续使用LHA以保持兼容性。

为什么LHA在长文件名上有时会失败?

经典的LHA在长文件名支持出现之前,使用DOS风格的8.3命名,导致提取时截断。

一些扩展的LHA实现增加了部分长文件名支持,但兼容性不一致。

现代提取工具可能会重命名文件或附加数字标识符以避免冲突。

为什么LHA仍然出现在复古游戏和模拟社区中?

许多Amiga、MS-DOS和PC-98游戏的修改、补丁和场景发布以LZH格式分发,并以该格式保留。

模拟器通常包括自动LHA支持,以确保与历史档案的真实性和兼容性。

游戏资源提取工具和粉丝翻译工具包经常依赖于传统的LZH包。

为什么LHA在现代Unicode文件名上有困难?

LHA在Unicode出现之前,因此文件名使用ANSI或Shift-JIS编码,导致在现代UTF-8系统上出现问题。

提取工具可能会误解字节序列,导致文件名乱码或不可读。

现代工具包括部分变通方法,但无法完全解决原始格式缺乏Unicode设计的问题。

LHA过时了吗?

在主流计算中,是的——更先进的格式如ZIP、RAR和7Z在压缩和可用性上优于LHA。

然而,LHA在复古计算、档案恢复和涉及历史软件的兼容性场景中仍然有价值。

其文化和技术遗产确保LHA将在需要精确保留旧档案的地方继续存在。

今天应该使用LHA吗?

仅在处理遗留档案、复古系统或明确要求LZH兼容性的软件包时使用LHA。

对于日常压缩和安全存储,现代格式提供了远远优越的性能和安全性。

LHA最好被视为一种特殊格式,保留用于历史准确性,而不是现代工作流程的实用选择。