免费转换 AR 文件
专业的 AR 文件转换工具
将您的文件拖放到这里
或点击浏览文件
支持的格式
以高质量在所有主要文件格式之间转换
常见格式
ZIP Archive - universal compression format developed by Phil Katz (1989) supporting multiple compression methods. Built into Windows, macOS, and Linux. Uses DEFLATE algorithm providing good compression (40-60% reduction) with fast processing. Supports file encryption, split archives, and compression levels. Maximum compatibility across all platforms and devices. Perfect for file sharing, email attachments, web downloads, and general-purpose compression. Industry standard with virtually universal software support including built-in OS tools, mobile apps, and command-line utilities.
RAR Archive - proprietary format by Eugene Roshal (1993) offering superior compression ratios (10-20% better than ZIP) through advanced algorithms. Popular on Windows with WinRAR software. Supports recovery records for damaged archive repair, solid compression for better ratios, strong AES encryption, and split archives up to 8 exabytes. Excellent for long-term storage, large file collections, and backup scenarios. Common in software distribution and file sharing communities. Requires WinRAR or compatible software (not built into most systems).
7-Zip Archive - open-source format by Igor Pavlov (1999) providing the best compression ratio available (20-40% better than ZIP, 10-15% better than RAR). Uses LZMA and LZMA2 algorithms with strong AES-256 encryption. Supports huge file sizes (16 exabytes), multiple compression methods, solid compression, and self-extracting archives. Free from licensing restrictions and patent concerns. Perfect for maximizing storage efficiency, software distribution, and backup archives where size matters. Requires 7-Zip or compatible software but offers exceptional space savings.
Unix Formats
TAR Archive - Tape Archive format from Unix (1979) bundling multiple files and directories into single file without compression. Preserves file permissions, ownership, timestamps, and symbolic links critical for Unix systems. Often combined with compression (TAR.GZ, TAR.BZ2, TAR.XZ) for efficient distribution. Standard format for Linux software packages, system backups, and cross-platform file transfer. Essential for maintaining Unix file attributes. Works with streaming operations enabling network transfers and piping. Foundation of Unix/Linux backup and distribution systems.
GZIP/TGZ - GNU zip compression format (1992) using DEFLATE algorithm, standard compression for Linux and Unix systems. TGZ is TAR archive compressed with GZIP. Fast compression and decompression with moderate ratios (50-70% reduction for text). Single-file compression commonly paired with TAR for multi-file archives. Universal on Unix/Linux systems with built-in 'gzip' command. Perfect for log files, text data, Linux software distribution, and web server compression. Streaming-friendly enabling on-the-fly compression. Industry standard for Unix file compression since the 1990s.
BZIP2/TBZ2 - block-sorting compression format by Julian Seward (1996) offering better compression than GZIP (10-15% smaller) at the cost of slower processing. TBZ2 is TAR archive compressed with BZIP2. Uses Burrows-Wheeler transform achieving excellent ratios on text and source code. Popular for software distribution where size matters more than speed. Common in Linux package repositories and source code archives. Ideal for archival storage, software releases, and situations prioritizing compression over speed. Standard tool on most Unix/Linux systems.
XZ/TXZ - modern compression format (2009) using LZMA2 algorithm providing excellent compression ratios approaching 7Z quality. TXZ is TAR archive compressed with XZ. Superior to GZIP and BZIP2 with ratios similar to 7Z but as single-file stream. Becoming the new standard for Linux distributions and software packages. Supports multi-threading for faster processing. Perfect for large archives, software distribution, and modern Linux systems. Smaller download sizes for software packages while maintaining fast decompression. Default compression for many current Linux distributions.
{format_tar_7z_desc}
{format_tar_bz_desc}
{format_tar_lz_desc}
{format_tar_lzma_desc}
{format_tar_lzo_desc}
{format_tar_z_desc}
TGZ - TAR archive compressed with GZIP compression. Combines TAR's file bundling with GZIP's compression in single extension (.tgz instead of .tar.gz). Standard format for Linux software distribution and source code packages. Maintains Unix file permissions and attributes while reducing size 50-70%. Fast compression and decompression speeds. Universal compatibility on Unix/Linux systems. Perfect for software releases, backup archives, and cross-platform file transfer. Abbreviated form of TAR.GZ with identical functionality and structure.
TBZ2 - TAR archive compressed with BZIP2 compression. Better compression than TGZ (10-15% smaller) but slower processing. Uses Burrows-Wheeler block sorting for excellent text compression. Common in Linux distributions and software packages where size is critical. Maintains Unix file permissions and attributes. Perfect for source code distribution, archival storage, and bandwidth-limited transfers. Abbreviated form of TAR.BZ2 with identical functionality. Standard format for Gentoo Linux packages and large software archives.
TXZ - TAR archive compressed with XZ (LZMA2) compression. Modern format offering best compression ratios for TAR archives (better than TGZ and TBZ2). Fast decompression despite high compression. Supports multi-threading for improved performance. Becoming standard for Linux distributions (Arch, Slackware use TXZ). Maintains Unix permissions and symbolic links. Perfect for large software packages, system backups, and efficient storage. Abbreviated form of TAR.XZ representing the future of Unix archive compression.
LZMA/TAR.LZMA - Lempel-Ziv-Markov chain Algorithm compression format (2001) offering excellent compression ratios. TAR.LZMA combines TAR archiving with LZMA compression. Predecessor to XZ format using similar algorithm but older container format. Better compression than GZIP and BZIP2 but superseded by XZ/LZMA2. Still encountered in older Linux distributions and legacy archives. Slower compression than GZIP but better ratios (similar to XZ). Modern systems prefer TAR.XZ over TAR.LZMA. Legacy format for accessing older compressed archives from 2000s era.
LZO/TAR.LZO - Lempel-Ziv-Oberhumer compression format prioritizing speed over compression ratio. TAR.LZO is TAR archive compressed with LZO. Extremely fast compression and decompression (faster than GZIP) with moderate ratios (30-50% reduction). Popular in real-time applications, live systems, and scenarios requiring instant decompression. Used by some Linux kernels and embedded systems. Common in backup solutions prioritizing speed. Perfect for temporary compression, live CD/USB systems, and high-speed data transfer. Trade-off: larger files than GZIP/BZIP2/XZ but much faster processing.
Z/TAR.Z - Unix compress format from 1985 using LZW (Lempel-Ziv-Welch) algorithm. TAR.Z is TAR archive compressed with compress command. Historical Unix compression format predating GZIP. Patent issues (until 2003) led to GZIP replacing it. Legacy format with poor compression by modern standards. Rarely used today except in very old Unix systems and historical archives. If you encounter .Z or .tar.Z files, convert to modern formats (TAR.GZ, TAR.XZ) for better compression and wider support. Important for accessing ancient Unix archives from 1980s-1990s.
专业格式
ISO Image - ISO 9660 disk image format containing exact sector-by-sector copy of optical media (CD/DVD/Blu-ray). Standard format for distributing operating systems, software installations, and bootable media. Can be mounted as virtual drive without physical disc. Contains complete filesystem including boot sectors, metadata, and file structures. Essential for Linux distributions, system recovery media, and software archives. Used by burning software, virtual machines, and media servers. Universal standard with support in all major operating systems for mounting and burning.
Cabinet Archive - Microsoft's compression format for Windows installers and system files. Used extensively in Windows setup packages, driver installations, and system updates. Supports multiple compression algorithms (DEFLATE, LZX, Quantum), split archives, and digital signatures. Built into Windows with native extraction support. Common in software distribution for Windows applications, particularly older installers and Microsoft products. Maintains Windows-specific attributes and can store multiple files with folder structures. Part of Windows since 1996.
AR Archive - Unix archiver format (1970s) originally for creating library archives (.a files). Simple format storing multiple files with basic metadata (filename, modification time, permissions). Used primarily for static libraries in Unix development (.a extension). Foundation format for DEB packages (Debian packages are AR archives containing control and data). Minimal compression support (none by default). Essential for Unix library management and Debian package structure. Standard tool 'ar' included on all Unix/Linux systems. Simple and reliable for static file collections.
Debian Package - software package format for Debian, Ubuntu, and derivative Linux distributions. Contains compiled software, installation scripts, configuration files, and dependency metadata. Used by APT package manager (apt, apt-get commands). Actually a special AR archive containing control files and data archives. Essential format for Debian-based Linux software distribution. Includes pre/post-installation scripts, version management, and dependency resolution. Standard packaging for thousands of Ubuntu/Debian applications. Can be inspected and extracted as regular archive.
RPM Package - Red Hat Package Manager format for Red Hat, Fedora, CentOS, SUSE, and derivative Linux distributions. Contains compiled software, installation metadata, scripts, and dependency information. Used by YUM and DNF package managers. Includes GPG signature support for security verification. Standard for Red Hat Enterprise Linux ecosystem. Supports pre/post-installation scriptlets, file verification, and rollback capabilities. Essential format for RHEL-based Linux software distribution. Can be extracted as archive to inspect contents without installation.
JAR档案 - 基于ZIP压缩的Java档案格式,用于打包Java应用程序。包含编译后的Java类(.class文件)、应用程序资源和清单元数据。Java应用程序和库的标准分发格式。支持数字签名以进行代码验证。可以是可执行的(带有Main-Class清单的可运行JAR文件)。非常适合Java应用程序部署、库分发和插件系统。与ZIP工具兼容,但包含Java特定功能。自1996年以来,Java开发和部署的基本格式。
ARJ Archive - legacy DOS compression format by Robert Jung (1991). Popular in DOS and early Windows era for its good compression ratio and ability to create multi-volume archives. Supports encryption, damage protection, and archive comments. Largely obsolete today, replaced by ZIP, RAR, and 7Z. Still encountered in legacy systems and old software archives. Requires ARJ or compatible decompression software. Historical format important for accessing old DOS/Windows archives from 1990s. Better converted to modern formats for long-term accessibility.
LHA档案 - 1988年开发的日本压缩格式(也称为LZH),在日本和Amiga用户中极为流行。使用LZSS和LZHUF压缩算法,提供良好的压缩比。1990年代日本软件分发中常见。支持档案头、目录结构和文件属性。遗留格式,现在大多被现代替代品取代。在复古计算、日本软件档案和Amiga社区中仍然可以遇到。提取需要LHA/LZH兼容软件。对于访问日本和Amiga软件档案非常重要。
CPIO Archive - Copy In/Out archive format from Unix (1970s) for creating file archives. Simpler than TAR, often used for system backups and initramfs/initrd creation. Standard format for Linux initial RAM disk images. Supports multiple formats (binary, ASCII, CRC). Better handling of special files and device nodes than TAR. Common in system administration, bootloader configurations, and kernel initrd images. Universal on Unix/Linux systems. Essential for system-level archiving and embedded Linux systems. Works well for streaming operations.
如何转换文件
上传您的文件,选择输出格式,立即下载转换后的文件。我们的转换器支持批量转换并保持高质量。
常见问题
What is an AR file and why is it still used on Unix-like systems?
An AR file is a simple, fixed-format archive used primarily on Unix and Linux systems. It predates most modern compression formats and was designed as a fast, deterministic way to bundle multiple files into a single container without sophisticated compression or metadata.
其可预测的结构使其非常适合在编程工具链中存储目标文件和静态库。实际上,大多数C/C++中的`.a`静态库只是包含编译目标文件的AR归档。
尽管历史悠久,AR仍然存在,因为工具链和低级系统实用程序依赖于其简单性、速度和不变格式,确保跨系统的长期兼容性。
为什么 AR 相较于现代归档格式使用如此简约的结构?
AR 是在一个简单性、速度和最小磁盘使用比压缩或丰富元数据更重要的时代创建的。
它的固定宽度头部、简单的文件表和可预测的布局使得链接器、编译器和构建系统等软件能够极快地解析和操作归档文件。
这种简约是有意为之:AR 旨在用于工具,而不是像 TAR 或 ZIP 那样的通用压缩归档。
Why do AR archives show up as .a files in Linux development?
C、C++ 和许多其他语言中的静态库使用 `.a` 扩展名,这些库实际上是包含多个 `.o`(目标)文件的 AR 归档。
AR 容器充当编译代码单元的简单文件夹,让链接器只从每个目标文件中提取所需的符号。
This approach keeps static libraries efficient, modular, and easy to maintain within Unix build systems.
为什么 AR 文件不能存储目录结构或压缩?
AR 从未打算成为一个完整的文件系统容器;每个条目都是一个没有层次结构的单一平面文件。
该格式早于常见的压缩标准,因此它假设原始存储而不是压缩容器。
压缩预计将在后续工作流程中使用像 gzip 或 xz 这样的工具进行——例如,`.deb` 包使用 AR 但单独压缩其内容。
为什么在 Debian 包中使用 AR?
一个 `.deb` 包实际上是一个包含三个文件的 AR 归档:`debian-binary`、`control.tar.*` 和 `data.tar.*`。
AR 提供了一个稳定的基础容器,Debian 工具可以依赖它,而无需担心格式变化或压缩选择。
它的刚性使其非常适合于一致性和可预测解析比功能更重要的打包系统。
手动提取或修改 AR 文件是否安全?
是的,可以使用 `ar`、`bsdtar` 或 `binutils` 等工具安全地检查 AR,而无需执行任何代码。
然而,以编译器或包管理器未预期的方式修改 AR 文件可能会破坏静态库或 Debian 包。
手动编辑最好保留用于调试、逆向工程或低级开发工作。
如果存在更新的归档格式,AR 仍然重要吗?
AR 深深嵌入软件开发工作流程中,特别是在 GNU binutils 和链接器工具链中。
其不变的格式保证了跨架构、编译器和构建系统的长期兼容性。
现代格式提供更多功能,但没有任何格式能匹配 AR 对静态库所需的确定性行为。
为什么 AR 文件有时包含符号索引?
许多 `.a` 静态库包括一个特殊的符号表(例如 `__.SYMDEF`),通过允许链接器快速将符号映射到目标文件来加快链接速度。
这显著减少了链接时间,尤其是对于具有许多目标条目的大型代码库。
像 `ranlib` 这样的工具生成或更新这些符号索引,以确保正确的链接行为。
AR 归档容易损坏吗?
AR 使用固定长度的头部且没有全局校验和,因此任何头部的损坏可能会阻止工具解析后续条目。
然而,它的简单性意味着损坏容易被检测到,并且通常可以手动修复。
对于像静态库这样的关键工件,开发人员通常在构建过程中重新生成 AR 文件,而不是手动修复它们。
AR 文件支持大文件或现代元数据吗?
经典的 AR 格式有其局限性,包括 16 个字符的文件名、受限的元数据字段和对大文件大小的有限支持。
存在扩展的 AR 格式(GNU、BSD、SVR4)以克服文件名限制并允许更大的归档。
尽管有扩展,AR 仍然远比 TAR、ZIP 或 7Z 原始。
为什么在嵌入式和交叉编译工具链中使用 AR 归档?
嵌入式工具链需要确定性、快速和低开销的格式——AR 在这些方面表现出色。
静态链接在嵌入式系统中很常见,通过 AR 打包的 `.a` 库是该工作流程的核心。
使用 AR 确保了跨交叉编译器和硬件架构的兼容性。
AR 文件能可靠地存储二进制数据吗?
是的,AR 存储原始文件流而不改变其二进制结构,使其适合于捆绑目标文件和机器代码。
由于 AR 不执行压缩或编码,因此不会发生位级转换。
这种可靠性是编译器仍然依赖 AR 用于静态库的原因之一。
How do AR versions differ across Unix variants?
System V、BSD 和 GNU 各自有自己的 AR 变体,具有轻微的头部差异和扩展功能,如长文件名。
GNU 和 BSD AR 支持扩展的元数据字段,克服了原始的限制,同时仍保持向后兼容性。
大多数构建系统和链接器自动透明地处理这些版本。
AR 适合通用归档吗?
不——AR 缺乏压缩、目录、加密、时间戳或现代归档格式所期望的灵活性。
它的使用案例非常狭窄,专注于系统级开发工作流程。
对于日常归档,像 TAR、ZIP 或 7Z 这样的格式更为合适。
何时应使用 AR 而不是其他格式?
在创建或管理静态库(`.a` 文件)或使用需要 AR 存档的工具链时。
在构建或检查 `.deb` 包时,因为 AR 是基础容器。
When interacting with low-level Unix development environments where simplicity, speed, and deterministic formats are essential.