免费转换 TGZ 文件
专业的 TGZ 文件转换工具
将您的文件拖放到这里
或点击浏览文件
支持的格式
以高质量在所有主要文件格式之间转换
常见格式
ZIP Archive - universal compression format developed by Phil Katz (1989) supporting multiple compression methods. Built into Windows, macOS, and Linux. Uses DEFLATE algorithm providing good compression (40-60% reduction) with fast processing. Supports file encryption, split archives, and compression levels. Maximum compatibility across all platforms and devices. Perfect for file sharing, email attachments, web downloads, and general-purpose compression. Industry standard with virtually universal software support including built-in OS tools, mobile apps, and command-line utilities.
RAR Archive - proprietary format by Eugene Roshal (1993) offering superior compression ratios (10-20% better than ZIP) through advanced algorithms. Popular on Windows with WinRAR software. Supports recovery records for damaged archive repair, solid compression for better ratios, strong AES encryption, and split archives up to 8 exabytes. Excellent for long-term storage, large file collections, and backup scenarios. Common in software distribution and file sharing communities. Requires WinRAR or compatible software (not built into most systems).
7-Zip Archive - open-source format by Igor Pavlov (1999) providing the best compression ratio available (20-40% better than ZIP, 10-15% better than RAR). Uses LZMA and LZMA2 algorithms with strong AES-256 encryption. Supports huge file sizes (16 exabytes), multiple compression methods, solid compression, and self-extracting archives. Free from licensing restrictions and patent concerns. Perfect for maximizing storage efficiency, software distribution, and backup archives where size matters. Requires 7-Zip or compatible software but offers exceptional space savings.
Unix Formats
TAR Archive - Tape Archive format from Unix (1979) bundling multiple files and directories into single file without compression. Preserves file permissions, ownership, timestamps, and symbolic links critical for Unix systems. Often combined with compression (TAR.GZ, TAR.BZ2, TAR.XZ) for efficient distribution. Standard format for Linux software packages, system backups, and cross-platform file transfer. Essential for maintaining Unix file attributes. Works with streaming operations enabling network transfers and piping. Foundation of Unix/Linux backup and distribution systems.
GZIP/TGZ - GNU zip compression format (1992) using DEFLATE algorithm, standard compression for Linux and Unix systems. TGZ is TAR archive compressed with GZIP. Fast compression and decompression with moderate ratios (50-70% reduction for text). Single-file compression commonly paired with TAR for multi-file archives. Universal on Unix/Linux systems with built-in 'gzip' command. Perfect for log files, text data, Linux software distribution, and web server compression. Streaming-friendly enabling on-the-fly compression. Industry standard for Unix file compression since the 1990s.
BZIP2/TBZ2 - block-sorting compression format by Julian Seward (1996) offering better compression than GZIP (10-15% smaller) at the cost of slower processing. TBZ2 is TAR archive compressed with BZIP2. Uses Burrows-Wheeler transform achieving excellent ratios on text and source code. Popular for software distribution where size matters more than speed. Common in Linux package repositories and source code archives. Ideal for archival storage, software releases, and situations prioritizing compression over speed. Standard tool on most Unix/Linux systems.
XZ/TXZ - modern compression format (2009) using LZMA2 algorithm providing excellent compression ratios approaching 7Z quality. TXZ is TAR archive compressed with XZ. Superior to GZIP and BZIP2 with ratios similar to 7Z but as single-file stream. Becoming the new standard for Linux distributions and software packages. Supports multi-threading for faster processing. Perfect for large archives, software distribution, and modern Linux systems. Smaller download sizes for software packages while maintaining fast decompression. Default compression for many current Linux distributions.
{format_tar_7z_desc}
{format_tar_bz_desc}
{format_tar_lz_desc}
{format_tar_lzma_desc}
{format_tar_lzo_desc}
{format_tar_z_desc}
TGZ - TAR archive compressed with GZIP compression. Combines TAR's file bundling with GZIP's compression in single extension (.tgz instead of .tar.gz). Standard format for Linux software distribution and source code packages. Maintains Unix file permissions and attributes while reducing size 50-70%. Fast compression and decompression speeds. Universal compatibility on Unix/Linux systems. Perfect for software releases, backup archives, and cross-platform file transfer. Abbreviated form of TAR.GZ with identical functionality and structure.
TBZ2 - TAR archive compressed with BZIP2 compression. Better compression than TGZ (10-15% smaller) but slower processing. Uses Burrows-Wheeler block sorting for excellent text compression. Common in Linux distributions and software packages where size is critical. Maintains Unix file permissions and attributes. Perfect for source code distribution, archival storage, and bandwidth-limited transfers. Abbreviated form of TAR.BZ2 with identical functionality. Standard format for Gentoo Linux packages and large software archives.
TXZ - TAR archive compressed with XZ (LZMA2) compression. Modern format offering best compression ratios for TAR archives (better than TGZ and TBZ2). Fast decompression despite high compression. Supports multi-threading for improved performance. Becoming standard for Linux distributions (Arch, Slackware use TXZ). Maintains Unix permissions and symbolic links. Perfect for large software packages, system backups, and efficient storage. Abbreviated form of TAR.XZ representing the future of Unix archive compression.
LZMA/TAR.LZMA - Lempel-Ziv-Markov chain Algorithm compression format (2001) offering excellent compression ratios. TAR.LZMA combines TAR archiving with LZMA compression. Predecessor to XZ format using similar algorithm but older container format. Better compression than GZIP and BZIP2 but superseded by XZ/LZMA2. Still encountered in older Linux distributions and legacy archives. Slower compression than GZIP but better ratios (similar to XZ). Modern systems prefer TAR.XZ over TAR.LZMA. Legacy format for accessing older compressed archives from 2000s era.
LZO/TAR.LZO - Lempel-Ziv-Oberhumer compression format prioritizing speed over compression ratio. TAR.LZO is TAR archive compressed with LZO. Extremely fast compression and decompression (faster than GZIP) with moderate ratios (30-50% reduction). Popular in real-time applications, live systems, and scenarios requiring instant decompression. Used by some Linux kernels and embedded systems. Common in backup solutions prioritizing speed. Perfect for temporary compression, live CD/USB systems, and high-speed data transfer. Trade-off: larger files than GZIP/BZIP2/XZ but much faster processing.
Z/TAR.Z - Unix compress format from 1985 using LZW (Lempel-Ziv-Welch) algorithm. TAR.Z is TAR archive compressed with compress command. Historical Unix compression format predating GZIP. Patent issues (until 2003) led to GZIP replacing it. Legacy format with poor compression by modern standards. Rarely used today except in very old Unix systems and historical archives. If you encounter .Z or .tar.Z files, convert to modern formats (TAR.GZ, TAR.XZ) for better compression and wider support. Important for accessing ancient Unix archives from 1980s-1990s.
专业格式
ISO Image - ISO 9660 disk image format containing exact sector-by-sector copy of optical media (CD/DVD/Blu-ray). Standard format for distributing operating systems, software installations, and bootable media. Can be mounted as virtual drive without physical disc. Contains complete filesystem including boot sectors, metadata, and file structures. Essential for Linux distributions, system recovery media, and software archives. Used by burning software, virtual machines, and media servers. Universal standard with support in all major operating systems for mounting and burning.
Cabinet Archive - Microsoft's compression format for Windows installers and system files. Used extensively in Windows setup packages, driver installations, and system updates. Supports multiple compression algorithms (DEFLATE, LZX, Quantum), split archives, and digital signatures. Built into Windows with native extraction support. Common in software distribution for Windows applications, particularly older installers and Microsoft products. Maintains Windows-specific attributes and can store multiple files with folder structures. Part of Windows since 1996.
AR Archive - Unix archiver format (1970s) originally for creating library archives (.a files). Simple format storing multiple files with basic metadata (filename, modification time, permissions). Used primarily for static libraries in Unix development (.a extension). Foundation format for DEB packages (Debian packages are AR archives containing control and data). Minimal compression support (none by default). Essential for Unix library management and Debian package structure. Standard tool 'ar' included on all Unix/Linux systems. Simple and reliable for static file collections.
Debian Package - software package format for Debian, Ubuntu, and derivative Linux distributions. Contains compiled software, installation scripts, configuration files, and dependency metadata. Used by APT package manager (apt, apt-get commands). Actually a special AR archive containing control files and data archives. Essential format for Debian-based Linux software distribution. Includes pre/post-installation scripts, version management, and dependency resolution. Standard packaging for thousands of Ubuntu/Debian applications. Can be inspected and extracted as regular archive.
RPM Package - Red Hat Package Manager format for Red Hat, Fedora, CentOS, SUSE, and derivative Linux distributions. Contains compiled software, installation metadata, scripts, and dependency information. Used by YUM and DNF package managers. Includes GPG signature support for security verification. Standard for Red Hat Enterprise Linux ecosystem. Supports pre/post-installation scriptlets, file verification, and rollback capabilities. Essential format for RHEL-based Linux software distribution. Can be extracted as archive to inspect contents without installation.
JAR档案 - 基于ZIP压缩的Java档案格式,用于打包Java应用程序。包含编译后的Java类(.class文件)、应用程序资源和清单元数据。Java应用程序和库的标准分发格式。支持数字签名以进行代码验证。可以是可执行的(带有Main-Class清单的可运行JAR文件)。非常适合Java应用程序部署、库分发和插件系统。与ZIP工具兼容,但包含Java特定功能。自1996年以来,Java开发和部署的基本格式。
ARJ Archive - legacy DOS compression format by Robert Jung (1991). Popular in DOS and early Windows era for its good compression ratio and ability to create multi-volume archives. Supports encryption, damage protection, and archive comments. Largely obsolete today, replaced by ZIP, RAR, and 7Z. Still encountered in legacy systems and old software archives. Requires ARJ or compatible decompression software. Historical format important for accessing old DOS/Windows archives from 1990s. Better converted to modern formats for long-term accessibility.
LHA档案 - 1988年开发的日本压缩格式(也称为LZH),在日本和Amiga用户中极为流行。使用LZSS和LZHUF压缩算法,提供良好的压缩比。1990年代日本软件分发中常见。支持档案头、目录结构和文件属性。遗留格式,现在大多被现代替代品取代。在复古计算、日本软件档案和Amiga社区中仍然可以遇到。提取需要LHA/LZH兼容软件。对于访问日本和Amiga软件档案非常重要。
CPIO Archive - Copy In/Out archive format from Unix (1970s) for creating file archives. Simpler than TAR, often used for system backups and initramfs/initrd creation. Standard format for Linux initial RAM disk images. Supports multiple formats (binary, ASCII, CRC). Better handling of special files and device nodes than TAR. Common in system administration, bootloader configurations, and kernel initrd images. Universal on Unix/Linux systems. Essential for system-level archiving and embedded Linux systems. Works well for streaming operations.
如何转换文件
上传您的文件,选择输出格式,立即下载转换后的文件。我们的转换器支持批量转换并保持高质量。
常见问题
What is a TGZ file and why is it commonly used on Unix and Linux systems?
A TGZ file is a compressed archive created by combining two steps: first bundling files into a TAR archive, and then compressing that TAR using Gzip. The resulting extension, .tgz or .tar.gz, is widely used on Linux, macOS, and server environments because it preserves full directory structures, permissions, symbolic links, ownership metadata, and timestamps while also reducing file size efficiently.
TGZ 是分发开源软件、系统备份、配置包和服务器部署包的标准格式。由于 TAR 处理结构而 Gzip 处理压缩,因此该格式保持灵活和可预测,同时提供强大的压缩性能。
TGZ 因其可移植性、与命令行工具的兼容性以及能够在单个压缩的、富含元数据的存档中处理大型数据集而受到青睐。
Why is TGZ preferred over ZIP in Linux environments?
TGZ preserves Unix permissions, symlinks, device files, and other metadata that ZIP does not track consistently, making it ideal for restoring system environments or deploying software.
Gzip 使用一种快速、高效的压缩算法,在许多文本密集型工作负载(如源代码和日志)上实现更好的压缩比。
TGZ integrates naturally with shell pipelines, scripting workflows, and package managers, making it the default in many Unix-like ecosystems.
为什么 TGZ 文件的提取速度比 ZIP 文件慢?
TGZ 使用固态压缩,这意味着所有数据作为连续流进行压缩。提取一个文件需要扫描整个存档。
Gzip 解压缩速度很快,但无法跳过,因此即使是小的提取也需要处理整个压缩块。
大型 TGZ 存档——尤其是软件源包——包含成千上万个小文件,增加了提取时间。
为什么 TGZ 提取有时会静默覆盖文件?
传统的 tar -x 命令默认情况下会覆盖现有文件,因为 TAR 假设您正在恢复一个精确的目录结构。
脚本和安装程序通常直接提取到系统目录中,而不提示,从而替换旧版本。
额外的标志或提取到临时文件夹可以防止意外覆盖。
为什么 TGZ 文件在压缩前会变得非常大?
TAR 组件在 Gzip 压缩之前存储原始文件数据和元数据,因此中间的 .tar 可能很大。
日志、数据库转储和媒体文件的备份可以显著增加 TAR 在 Gzip 压缩之前的大小。
像 MP4、JPG 和 PNG 这样的压缩格式在 TGZ 中几乎不会缩小,从而限制了整体大小的减少。
TGZ 文件的安全性如何?
TGZ 文件本身不提供加密——TAR 和 Gzip 默认以可读形式存储数据。
要保护 TGZ,必须使用外部加密,例如 GPG、OpenSSL 或加密容器。
加密的 .tar.gz.gpg 文件在安全配置备份和服务器部署包中很常见。
为什么 TGZ 文件有时会出现 '意外文件结尾' 错误?
部分下载或中断的传输会使 Gzip 流不完整,导致无法提取。
文件末尾的损坏会破坏校验和,阻止工具读取完整的压缩块。
压缩流中损坏的 TAR 头也可能导致不完整的提取错误。
为什么 TGZ 在不同操作系统上表现不同?
Windows tools like WinRAR and 7-Zip can extract TGZ but may not fully support Unix permission restoration.
Linux and macOS tar utilities preserve permissions, ownership, and extended attributes accurately.
不同的 Gzip 库可能会稍微不同地处理压缩标志和元数据字段。
TGZ 文件可以修复吗?
轻微的损坏可以通过使用 gunzip -f 或 tar --ignore-zeros 等标志来绕过,从而允许部分恢复。
如果 Gzip 尾部损坏,存档可能无法恢复,因为校验和验证失败。
版本化云存储或备份通常提供了修复损坏的 TGZ 存档的最简单方法。
为什么 TGZ 被用于分发开源软件?
Most build tools, source control systems, and packaging workflows on Unix-like systems expect .tar.gz bundles.
TGZ 保留了脚本、可执行文件和编译二进制文件所需的文件权限。
该格式轻量、确定且易于从命令行构建管道生成。
为什么 Docker 和容器系统在内部使用 TGZ?
TGZ 保留了准确重建容器层所需的完整文件系统元数据。
其顺序压缩流与基于层的容器存储模型完美契合。
它确保在不同主机环境中具有一致的可重现性。
TGZ 适合日常文件共享吗?
TGZ 非常适合技术环境,但对不熟悉 TAR 和 Gzip 的普通用户来说不太方便。
ZIP may be better for cross-platform sharing since it opens natively on Windows and mobile devices.
TGZ excels in developer, server, and Unix-centric use cases where metadata preservation matters.
为什么 TGZ 对文本和代码的压缩效果比许多其他格式更好?
Gzip 使用基于字典的 DEFLATE 压缩,在文本密集型源上非常有效。
大型源代码库在成千上万个文件中包含重复模式,这些模式压缩效果极佳。
This efficiency is one reason almost all open-source releases—from Linux kernels to Python modules—ship as .tar.gz.
TGZ 相比于更新的压缩格式是否过时?
不——TGZ 仍然被广泛使用,因为它在速度、兼容性和足够的压缩之间取得了平衡。
然而,.tar.xz 和 .tar.zst 等格式可以为大型存档提供更好的压缩比。
TGZ 的极高可移植性使其在创建数十年后仍然保持相关性。
您应该将 TGZ 作为主要归档格式使用吗?
Use TGZ if you work with Linux, macOS, servers, or software distribution pipelines.
它非常适合备份、部署包和需要元数据准确性的源代码打包。
对于随意分享或简单压缩,ZIP 更容易,而对于最大压缩,.tar.xz 或 .tar.zst 可能是更好的选择。