免费转换 ARJ 文件
专业的 ARJ 文件转换工具
将您的文件拖放到这里
或点击浏览文件
支持的格式
以高质量在所有主要文件格式之间转换
常见格式
ZIP Archive - universal compression format developed by Phil Katz (1989) supporting multiple compression methods. Built into Windows, macOS, and Linux. Uses DEFLATE algorithm providing good compression (40-60% reduction) with fast processing. Supports file encryption, split archives, and compression levels. Maximum compatibility across all platforms and devices. Perfect for file sharing, email attachments, web downloads, and general-purpose compression. Industry standard with virtually universal software support including built-in OS tools, mobile apps, and command-line utilities.
RAR Archive - proprietary format by Eugene Roshal (1993) offering superior compression ratios (10-20% better than ZIP) through advanced algorithms. Popular on Windows with WinRAR software. Supports recovery records for damaged archive repair, solid compression for better ratios, strong AES encryption, and split archives up to 8 exabytes. Excellent for long-term storage, large file collections, and backup scenarios. Common in software distribution and file sharing communities. Requires WinRAR or compatible software (not built into most systems).
7-Zip Archive - open-source format by Igor Pavlov (1999) providing the best compression ratio available (20-40% better than ZIP, 10-15% better than RAR). Uses LZMA and LZMA2 algorithms with strong AES-256 encryption. Supports huge file sizes (16 exabytes), multiple compression methods, solid compression, and self-extracting archives. Free from licensing restrictions and patent concerns. Perfect for maximizing storage efficiency, software distribution, and backup archives where size matters. Requires 7-Zip or compatible software but offers exceptional space savings.
Unix Formats
TAR Archive - Tape Archive format from Unix (1979) bundling multiple files and directories into single file without compression. Preserves file permissions, ownership, timestamps, and symbolic links critical for Unix systems. Often combined with compression (TAR.GZ, TAR.BZ2, TAR.XZ) for efficient distribution. Standard format for Linux software packages, system backups, and cross-platform file transfer. Essential for maintaining Unix file attributes. Works with streaming operations enabling network transfers and piping. Foundation of Unix/Linux backup and distribution systems.
GZIP/TGZ - GNU zip compression format (1992) using DEFLATE algorithm, standard compression for Linux and Unix systems. TGZ is TAR archive compressed with GZIP. Fast compression and decompression with moderate ratios (50-70% reduction for text). Single-file compression commonly paired with TAR for multi-file archives. Universal on Unix/Linux systems with built-in 'gzip' command. Perfect for log files, text data, Linux software distribution, and web server compression. Streaming-friendly enabling on-the-fly compression. Industry standard for Unix file compression since the 1990s.
BZIP2/TBZ2 - block-sorting compression format by Julian Seward (1996) offering better compression than GZIP (10-15% smaller) at the cost of slower processing. TBZ2 is TAR archive compressed with BZIP2. Uses Burrows-Wheeler transform achieving excellent ratios on text and source code. Popular for software distribution where size matters more than speed. Common in Linux package repositories and source code archives. Ideal for archival storage, software releases, and situations prioritizing compression over speed. Standard tool on most Unix/Linux systems.
XZ/TXZ - modern compression format (2009) using LZMA2 algorithm providing excellent compression ratios approaching 7Z quality. TXZ is TAR archive compressed with XZ. Superior to GZIP and BZIP2 with ratios similar to 7Z but as single-file stream. Becoming the new standard for Linux distributions and software packages. Supports multi-threading for faster processing. Perfect for large archives, software distribution, and modern Linux systems. Smaller download sizes for software packages while maintaining fast decompression. Default compression for many current Linux distributions.
{format_tar_7z_desc}
{format_tar_bz_desc}
{format_tar_lz_desc}
{format_tar_lzma_desc}
{format_tar_lzo_desc}
{format_tar_z_desc}
TGZ - TAR archive compressed with GZIP compression. Combines TAR's file bundling with GZIP's compression in single extension (.tgz instead of .tar.gz). Standard format for Linux software distribution and source code packages. Maintains Unix file permissions and attributes while reducing size 50-70%. Fast compression and decompression speeds. Universal compatibility on Unix/Linux systems. Perfect for software releases, backup archives, and cross-platform file transfer. Abbreviated form of TAR.GZ with identical functionality and structure.
TBZ2 - TAR archive compressed with BZIP2 compression. Better compression than TGZ (10-15% smaller) but slower processing. Uses Burrows-Wheeler block sorting for excellent text compression. Common in Linux distributions and software packages where size is critical. Maintains Unix file permissions and attributes. Perfect for source code distribution, archival storage, and bandwidth-limited transfers. Abbreviated form of TAR.BZ2 with identical functionality. Standard format for Gentoo Linux packages and large software archives.
TXZ - TAR archive compressed with XZ (LZMA2) compression. Modern format offering best compression ratios for TAR archives (better than TGZ and TBZ2). Fast decompression despite high compression. Supports multi-threading for improved performance. Becoming standard for Linux distributions (Arch, Slackware use TXZ). Maintains Unix permissions and symbolic links. Perfect for large software packages, system backups, and efficient storage. Abbreviated form of TAR.XZ representing the future of Unix archive compression.
LZMA/TAR.LZMA - Lempel-Ziv-Markov chain Algorithm compression format (2001) offering excellent compression ratios. TAR.LZMA combines TAR archiving with LZMA compression. Predecessor to XZ format using similar algorithm but older container format. Better compression than GZIP and BZIP2 but superseded by XZ/LZMA2. Still encountered in older Linux distributions and legacy archives. Slower compression than GZIP but better ratios (similar to XZ). Modern systems prefer TAR.XZ over TAR.LZMA. Legacy format for accessing older compressed archives from 2000s era.
LZO/TAR.LZO - Lempel-Ziv-Oberhumer compression format prioritizing speed over compression ratio. TAR.LZO is TAR archive compressed with LZO. Extremely fast compression and decompression (faster than GZIP) with moderate ratios (30-50% reduction). Popular in real-time applications, live systems, and scenarios requiring instant decompression. Used by some Linux kernels and embedded systems. Common in backup solutions prioritizing speed. Perfect for temporary compression, live CD/USB systems, and high-speed data transfer. Trade-off: larger files than GZIP/BZIP2/XZ but much faster processing.
Z/TAR.Z - Unix compress format from 1985 using LZW (Lempel-Ziv-Welch) algorithm. TAR.Z is TAR archive compressed with compress command. Historical Unix compression format predating GZIP. Patent issues (until 2003) led to GZIP replacing it. Legacy format with poor compression by modern standards. Rarely used today except in very old Unix systems and historical archives. If you encounter .Z or .tar.Z files, convert to modern formats (TAR.GZ, TAR.XZ) for better compression and wider support. Important for accessing ancient Unix archives from 1980s-1990s.
专业格式
ISO Image - ISO 9660 disk image format containing exact sector-by-sector copy of optical media (CD/DVD/Blu-ray). Standard format for distributing operating systems, software installations, and bootable media. Can be mounted as virtual drive without physical disc. Contains complete filesystem including boot sectors, metadata, and file structures. Essential for Linux distributions, system recovery media, and software archives. Used by burning software, virtual machines, and media servers. Universal standard with support in all major operating systems for mounting and burning.
Cabinet Archive - Microsoft's compression format for Windows installers and system files. Used extensively in Windows setup packages, driver installations, and system updates. Supports multiple compression algorithms (DEFLATE, LZX, Quantum), split archives, and digital signatures. Built into Windows with native extraction support. Common in software distribution for Windows applications, particularly older installers and Microsoft products. Maintains Windows-specific attributes and can store multiple files with folder structures. Part of Windows since 1996.
AR Archive - Unix archiver format (1970s) originally for creating library archives (.a files). Simple format storing multiple files with basic metadata (filename, modification time, permissions). Used primarily for static libraries in Unix development (.a extension). Foundation format for DEB packages (Debian packages are AR archives containing control and data). Minimal compression support (none by default). Essential for Unix library management and Debian package structure. Standard tool 'ar' included on all Unix/Linux systems. Simple and reliable for static file collections.
Debian Package - software package format for Debian, Ubuntu, and derivative Linux distributions. Contains compiled software, installation scripts, configuration files, and dependency metadata. Used by APT package manager (apt, apt-get commands). Actually a special AR archive containing control files and data archives. Essential format for Debian-based Linux software distribution. Includes pre/post-installation scripts, version management, and dependency resolution. Standard packaging for thousands of Ubuntu/Debian applications. Can be inspected and extracted as regular archive.
RPM Package - Red Hat Package Manager format for Red Hat, Fedora, CentOS, SUSE, and derivative Linux distributions. Contains compiled software, installation metadata, scripts, and dependency information. Used by YUM and DNF package managers. Includes GPG signature support for security verification. Standard for Red Hat Enterprise Linux ecosystem. Supports pre/post-installation scriptlets, file verification, and rollback capabilities. Essential format for RHEL-based Linux software distribution. Can be extracted as archive to inspect contents without installation.
JAR档案 - 基于ZIP压缩的Java档案格式,用于打包Java应用程序。包含编译后的Java类(.class文件)、应用程序资源和清单元数据。Java应用程序和库的标准分发格式。支持数字签名以进行代码验证。可以是可执行的(带有Main-Class清单的可运行JAR文件)。非常适合Java应用程序部署、库分发和插件系统。与ZIP工具兼容,但包含Java特定功能。自1996年以来,Java开发和部署的基本格式。
ARJ Archive - legacy DOS compression format by Robert Jung (1991). Popular in DOS and early Windows era for its good compression ratio and ability to create multi-volume archives. Supports encryption, damage protection, and archive comments. Largely obsolete today, replaced by ZIP, RAR, and 7Z. Still encountered in legacy systems and old software archives. Requires ARJ or compatible decompression software. Historical format important for accessing old DOS/Windows archives from 1990s. Better converted to modern formats for long-term accessibility.
LHA档案 - 1988年开发的日本压缩格式(也称为LZH),在日本和Amiga用户中极为流行。使用LZSS和LZHUF压缩算法,提供良好的压缩比。1990年代日本软件分发中常见。支持档案头、目录结构和文件属性。遗留格式,现在大多被现代替代品取代。在复古计算、日本软件档案和Amiga社区中仍然可以遇到。提取需要LHA/LZH兼容软件。对于访问日本和Amiga软件档案非常重要。
CPIO Archive - Copy In/Out archive format from Unix (1970s) for creating file archives. Simpler than TAR, often used for system backups and initramfs/initrd creation. Standard format for Linux initial RAM disk images. Supports multiple formats (binary, ASCII, CRC). Better handling of special files and device nodes than TAR. Common in system administration, bootloader configurations, and kernel initrd images. Universal on Unix/Linux systems. Essential for system-level archiving and embedded Linux systems. Works well for streaming operations.
如何转换文件
上传您的文件,选择输出格式,立即下载转换后的文件。我们的转换器支持批量转换并保持高质量。
常见问题
什么是 ARJ 文件,为什么它在早期 PC 压缩中如此受欢迎?
An ARJ file is a compressed archive created using the ARJ (Archived by Robert Jung) compression system, a dominant format on DOS and early Windows PCs during the 1990s. It provided strong compression, multi-volume splitting, and advanced features long before ZIP tools offered similar capabilities.
ARJ 在强大用户中赢得了声誉,因为它能够处理大量文件集合,支持强大的压缩,并在软盘脆弱且缓慢的时代提供了强大的恢复功能。
尽管今天主要被 ZIP、RAR 和 7Z 取代,ARJ 仍然具有历史重要性,仍可用现代工具提取,并偶尔用于遗留企业系统、复古计算和档案恢复工作流。
为什么 ARJ 文件的压缩效果优于早期的 ZIP 压缩文件?
ARJ 使用了先进的 Lempel–Ziv 压缩策略,其建模能力强于当时的 PKZIP 版本,为文本、可执行文件和软件分发生成了更小的压缩包。
它支持固态压缩,使压缩器能够将多个文件作为单一数据流进行分析,提高了相似文件类型的效率。
ARJ 还允许用户精细调整参数,使专家用户能够控制压缩比、字典大小和文件行为——提供了 ZIP 当时无法匹敌的优势。
为什么 ARJ 文件在现代系统上提取速度慢?
ARJ 的压缩算法在当时对 CPU 的要求较高,与现代优化格式如 7Z 或 Zstandard 相比仍然较慢。
固态压缩需要在访问单个文件之前解压缩大型数据段,这增加了提取时间。
该格式是为旧处理器设计的,并未针对多线程或现代 CPU 架构进行优化。
为什么 ARJ 文件在提取过程中有时会出现错误?
ARJ 压缩文件经常使用多卷软盘分割;缺失或不完整的部分可能会破坏整个压缩文件。
位腐蚀或老旧存储介质的损坏——尤其是老式软盘或老化的硬盘——可能会损坏压缩文件头。
Some extraction tools implement ARJ support poorly; using the official ARJ.EXE or high-quality tools like 7-Zip often resolves errors.
为什么某些 ARJ 压缩文件比预期的要大?
ARJ 在处理已经压缩的格式(如 JPEG、MP4、ZIP 和 MP3)时表现不佳,通常会增加开销而不是减少大小。
固态压缩是可选的;如果禁用,压缩文件可能会表现不佳,尤其是对于许多小文件。
ARJ 的遗留设计并不总是与现代高熵数据模式匹配,限制了其今天的有效性。
ARJ 对敏感数据是否足够安全?
ARJ 包含密码保护,但其加密在现代密码标准下已过时且易受攻击。
暴力破解工具通常可以破解 ARJ 加密,因为其密钥派生和加密块较小。
如果您必须保护 ARJ 数据,请使用外部加密(如 GPG),而不是依赖于压缩文件的内置密码系统。
为什么 ARJ 文件在提取过程中有时会覆盖文件?
ARJ 默认恢复精确的目录结构,并在不提示的情况下替换文件,反映了 DOS 时代的自动化行为。
某些第三方提取工具模仿这种行为,除非另行配置。
提取到专用文件夹或使用覆盖保护标志以避免意外替换。
为什么 ARJ 文件在现代操作系统上难以打开?
Native support disappeared decades ago, so Windows, macOS, and Linux no longer include ARJ extractors by default.
某些工具仅部分支持 ARJ,无法处理多卷或固态压缩文件。
Using 7-Zip, Unar, or the original ARJ.EXE (run through DOSBox if needed) offers the best compatibility.
如果损坏,ARJ 文件可以修复吗?
ARJ 包含恢复和容错功能,但仅适用于创建了恢复记录的压缩文件。
像 ARJ.EXE 这样的工具可以尝试块恢复,适用于旧软盘或部分损坏的介质。
严重的损坏——尤其是在头部——通常会导致档案无法恢复。
为什么 ARJ 的受欢迎程度下降了?
由于广泛的操作系统支持和更简单的用户体验,ZIP 成为了行业标准。
RAR 和 7Z 在压缩比、功能和恢复能力上超越了 ARJ。
ARJ 的 DOS 设计和缓慢性能使其在计算机发展过程中变得不切实际。
为什么一些复古或企业系统仍然需要 ARJ?
遗留的自动化脚本、构建系统和安装程序是围绕 ARJ 的命令行行为构建的。
一些旧的企业应用程序仍然以 ARJ 格式分发补丁或模块。
复古爱好者和档案管理员依赖 ARJ 来恢复符合时代的软件包。
为什么 ARJ 档案在合并分卷时有时会失败?
ARJ 使用严格的顺序卷索引;缺少或错误排序的部分会破坏链条。
文件名变体(例如,.a01 与 .arj.001)可能会混淆提取器。
重建正确的卷命名或使用 ARJ.EXE 通常可以解决排序问题。
为什么 ARJ 经常出现在恶意软件分析报告中?
较旧的恶意软件使用 ARJ 来打包有效载荷,因为它比 ZIP 或 RAR 格式受到的监控较少。
可执行打包程序有时会将 ARJ 档案嵌入自解压外壳中。
今天它主要出现在用于研究分析的遗留样本中,而不是现代威胁。
ARJ 今天仍然有用吗?
对于复古计算和 DOS 环境,ARJ 仍然保持真实和功能。
它可预测的压缩行为在重建或提取遗留软件分发时非常有利。
对于现代工作流程,存在更好的替代方案,但 ARJ 在其原始环境中仍然可靠。
您应该在当前项目中使用 ARJ 吗?
仅在与遗留系统、复古媒体或明确要求的历史档案交互时使用 ARJ。
对于现代压缩需求,优先选择 7Z、ZIP、RAR 或基于 TAR 的格式,以获得更好的性能、安全性和支持。
ARJ 仍然是一个有趣且功能齐全的格式,但更适合复古和专业任务,而不是一般用途。