Konversi File RPM Gratis

Alat konversi file RPM profesional

Seret file Anda ke sini

atau klik untuk menjelajahi file

Ukuran file maksimum: 100MB
10M+ File yang Dikonversi
100% Gratis Selamanya
Enkripsi Enkripsi Aman 256-bit

Format yang Didukung

Konversi antara semua format file utama dengan kualitas tinggi

Format Umum

ZIP

ZIP Archive - universal compression format developed by Phil Katz (1989) supporting multiple compression methods. Built into Windows, macOS, and Linux. Uses DEFLATE algorithm providing good compression (40-60% reduction) with fast processing. Supports file encryption, split archives, and compression levels. Maximum compatibility across all platforms and devices. Perfect for file sharing, email attachments, web downloads, and general-purpose compression. Industry standard with virtually universal software support including built-in OS tools, mobile apps, and command-line utilities.

RAR

RAR Archive - proprietary format by Eugene Roshal (1993) offering superior compression ratios (10-20% better than ZIP) through advanced algorithms. Popular on Windows with WinRAR software. Supports recovery records for damaged archive repair, solid compression for better ratios, strong AES encryption, and split archives up to 8 exabytes. Excellent for long-term storage, large file collections, and backup scenarios. Common in software distribution and file sharing communities. Requires WinRAR or compatible software (not built into most systems).

7Z

7-Zip Archive - open-source format by Igor Pavlov (1999) providing the best compression ratio available (20-40% better than ZIP, 10-15% better than RAR). Uses LZMA and LZMA2 algorithms with strong AES-256 encryption. Supports huge file sizes (16 exabytes), multiple compression methods, solid compression, and self-extracting archives. Free from licensing restrictions and patent concerns. Perfect for maximizing storage efficiency, software distribution, and backup archives where size matters. Requires 7-Zip or compatible software but offers exceptional space savings.

Unix Formats

TAR

TAR Archive - Tape Archive format from Unix (1979) bundling multiple files and directories into single file without compression. Preserves file permissions, ownership, timestamps, and symbolic links critical for Unix systems. Often combined with compression (TAR.GZ, TAR.BZ2, TAR.XZ) for efficient distribution. Standard format for Linux software packages, system backups, and cross-platform file transfer. Essential for maintaining Unix file attributes. Works with streaming operations enabling network transfers and piping. Foundation of Unix/Linux backup and distribution systems.

GZ/TGZ

GZIP/TGZ - GNU zip compression format (1992) using DEFLATE algorithm, standard compression for Linux and Unix systems. TGZ is TAR archive compressed with GZIP. Fast compression and decompression with moderate ratios (50-70% reduction for text). Single-file compression commonly paired with TAR for multi-file archives. Universal on Unix/Linux systems with built-in 'gzip' command. Perfect for log files, text data, Linux software distribution, and web server compression. Streaming-friendly enabling on-the-fly compression. Industry standard for Unix file compression since the 1990s.

BZ2/TBZ2

BZIP2/TBZ2 - block-sorting compression format by Julian Seward (1996) offering better compression than GZIP (10-15% smaller) at the cost of slower processing. TBZ2 is TAR archive compressed with BZIP2. Uses Burrows-Wheeler transform achieving excellent ratios on text and source code. Popular for software distribution where size matters more than speed. Common in Linux package repositories and source code archives. Ideal for archival storage, software releases, and situations prioritizing compression over speed. Standard tool on most Unix/Linux systems.

XZ/TXZ

XZ/TXZ - modern compression format (2009) using LZMA2 algorithm providing excellent compression ratios approaching 7Z quality. TXZ is TAR archive compressed with XZ. Superior to GZIP and BZIP2 with ratios similar to 7Z but as single-file stream. Becoming the new standard for Linux distributions and software packages. Supports multi-threading for faster processing. Perfect for large archives, software distribution, and modern Linux systems. Smaller download sizes for software packages while maintaining fast decompression. Default compression for many current Linux distributions.

TAR.7Z

{format_tar_7z_desc}

TAR.BZ

{format_tar_bz_desc}

TAR.LZ

{format_tar_lz_desc}

TAR.LZMA

{format_tar_lzma_desc}

TAR.LZO

{format_tar_lzo_desc}

TAR.Z

{format_tar_z_desc}

TGZ

TGZ - TAR archive compressed with GZIP compression. Combines TAR's file bundling with GZIP's compression in single extension (.tgz instead of .tar.gz). Standard format for Linux software distribution and source code packages. Maintains Unix file permissions and attributes while reducing size 50-70%. Fast compression and decompression speeds. Universal compatibility on Unix/Linux systems. Perfect for software releases, backup archives, and cross-platform file transfer. Abbreviated form of TAR.GZ with identical functionality and structure.

TBZ2

TBZ2 - TAR archive compressed with BZIP2 compression. Better compression than TGZ (10-15% smaller) but slower processing. Uses Burrows-Wheeler block sorting for excellent text compression. Common in Linux distributions and software packages where size is critical. Maintains Unix file permissions and attributes. Perfect for source code distribution, archival storage, and bandwidth-limited transfers. Abbreviated form of TAR.BZ2 with identical functionality. Standard format for Gentoo Linux packages and large software archives.

TXZ

TXZ - TAR archive compressed with XZ (LZMA2) compression. Modern format offering best compression ratios for TAR archives (better than TGZ and TBZ2). Fast decompression despite high compression. Supports multi-threading for improved performance. Becoming standard for Linux distributions (Arch, Slackware use TXZ). Maintains Unix permissions and symbolic links. Perfect for large software packages, system backups, and efficient storage. Abbreviated form of TAR.XZ representing the future of Unix archive compression.

LZMA

LZMA/TAR.LZMA - Lempel-Ziv-Markov chain Algorithm compression format (2001) offering excellent compression ratios. TAR.LZMA combines TAR archiving with LZMA compression. Predecessor to XZ format using similar algorithm but older container format. Better compression than GZIP and BZIP2 but superseded by XZ/LZMA2. Still encountered in older Linux distributions and legacy archives. Slower compression than GZIP but better ratios (similar to XZ). Modern systems prefer TAR.XZ over TAR.LZMA. Legacy format for accessing older compressed archives from 2000s era.

LZO

LZO/TAR.LZO - Lempel-Ziv-Oberhumer compression format prioritizing speed over compression ratio. TAR.LZO is TAR archive compressed with LZO. Extremely fast compression and decompression (faster than GZIP) with moderate ratios (30-50% reduction). Popular in real-time applications, live systems, and scenarios requiring instant decompression. Used by some Linux kernels and embedded systems. Common in backup solutions prioritizing speed. Perfect for temporary compression, live CD/USB systems, and high-speed data transfer. Trade-off: larger files than GZIP/BZIP2/XZ but much faster processing.

Z

Z/TAR.Z - Unix compress format from 1985 using LZW (Lempel-Ziv-Welch) algorithm. TAR.Z is TAR archive compressed with compress command. Historical Unix compression format predating GZIP. Patent issues (until 2003) led to GZIP replacing it. Legacy format with poor compression by modern standards. Rarely used today except in very old Unix systems and historical archives. If you encounter .Z or .tar.Z files, convert to modern formats (TAR.GZ, TAR.XZ) for better compression and wider support. Important for accessing ancient Unix archives from 1980s-1990s.

Format Khusus

ISO

ISO Image - ISO 9660 disk image format containing exact sector-by-sector copy of optical media (CD/DVD/Blu-ray). Standard format for distributing operating systems, software installations, and bootable media. Can be mounted as virtual drive without physical disc. Contains complete filesystem including boot sectors, metadata, and file structures. Essential for Linux distributions, system recovery media, and software archives. Used by burning software, virtual machines, and media servers. Universal standard with support in all major operating systems for mounting and burning.

CAB

Cabinet Archive - Microsoft's compression format for Windows installers and system files. Used extensively in Windows setup packages, driver installations, and system updates. Supports multiple compression algorithms (DEFLATE, LZX, Quantum), split archives, and digital signatures. Built into Windows with native extraction support. Common in software distribution for Windows applications, particularly older installers and Microsoft products. Maintains Windows-specific attributes and can store multiple files with folder structures. Part of Windows since 1996.

AR

AR Archive - Unix archiver format (1970s) originally for creating library archives (.a files). Simple format storing multiple files with basic metadata (filename, modification time, permissions). Used primarily for static libraries in Unix development (.a extension). Foundation format for DEB packages (Debian packages are AR archives containing control and data). Minimal compression support (none by default). Essential for Unix library management and Debian package structure. Standard tool 'ar' included on all Unix/Linux systems. Simple and reliable for static file collections.

DEB

Debian Package - software package format for Debian, Ubuntu, and derivative Linux distributions. Contains compiled software, installation scripts, configuration files, and dependency metadata. Used by APT package manager (apt, apt-get commands). Actually a special AR archive containing control files and data archives. Essential format for Debian-based Linux software distribution. Includes pre/post-installation scripts, version management, and dependency resolution. Standard packaging for thousands of Ubuntu/Debian applications. Can be inspected and extracted as regular archive.

RPM

RPM Package - Red Hat Package Manager format for Red Hat, Fedora, CentOS, SUSE, and derivative Linux distributions. Contains compiled software, installation metadata, scripts, and dependency information. Used by YUM and DNF package managers. Includes GPG signature support for security verification. Standard for Red Hat Enterprise Linux ecosystem. Supports pre/post-installation scriptlets, file verification, and rollback capabilities. Essential format for RHEL-based Linux software distribution. Can be extracted as archive to inspect contents without installation.

JAR

JAR Archive - format Java Archive berdasarkan kompresi ZIP untuk pengemasan aplikasi Java. Berisi kelas Java yang telah dikompilasi (.class files), sumber daya aplikasi, dan metadata manifest. Format distribusi standar untuk aplikasi dan pustaka Java. Mendukung tanda tangan digital untuk verifikasi kode. Dapat dieksekusi (file JAR yang dapat dijalankan dengan manifest Main-Class). Sempurna untuk penyebaran aplikasi Java, distribusi pustaka, dan sistem plugin. Kompatibel dengan alat ZIP tetapi mencakup fitur khusus Java. Format penting untuk pengembangan dan penyebaran Java sejak 1996.

ARJ

ARJ Archive - legacy DOS compression format by Robert Jung (1991). Popular in DOS and early Windows era for its good compression ratio and ability to create multi-volume archives. Supports encryption, damage protection, and archive comments. Largely obsolete today, replaced by ZIP, RAR, and 7Z. Still encountered in legacy systems and old software archives. Requires ARJ or compatible decompression software. Historical format important for accessing old DOS/Windows archives from 1990s. Better converted to modern formats for long-term accessibility.

LHA

LHA Archive - format kompresi Jepang (juga LZH) yang dikembangkan pada tahun 1988, sangat populer di Jepang dan di kalangan pengguna Amiga. Menggunakan algoritma kompresi LZSS dan LZHUF yang memberikan rasio yang baik. Umum untuk distribusi perangkat lunak Jepang pada tahun 1990-an. Mendukung header arsip, struktur direktori, dan atribut file. Format warisan yang sekarang sebagian besar telah digantikan oleh alternatif modern. Masih ditemukan dalam komputasi retro, arsip perangkat lunak Jepang, dan komunitas Amiga. Memerlukan perangkat lunak yang kompatibel LHA/LZH untuk ekstraksi. Penting untuk mengakses arsip perangkat lunak Jepang dan Amiga.

CPIO

CPIO Archive - Copy In/Out archive format from Unix (1970s) for creating file archives. Simpler than TAR, often used for system backups and initramfs/initrd creation. Standard format for Linux initial RAM disk images. Supports multiple formats (binary, ASCII, CRC). Better handling of special files and device nodes than TAR. Common in system administration, bootloader configurations, and kernel initrd images. Universal on Unix/Linux systems. Essential for system-level archiving and embedded Linux systems. Works well for streaming operations.

Cara Mengonversi File

Unggah file Anda, pilih format keluaran, dan unduh file yang telah dikonversi secara instan. Konverter kami mendukung konversi batch dan mempertahankan kualitas tinggi.

Pertanyaan yang Sering Diajukan

What is an RPM file and why is it the core packaging format in Red Hatโ€“based Linux distributions?

An RPM (Red Hat Package Manager) file is a structured software package format used by Fedora, RHEL, CentOS, openSUSE, AlmaLinux, Rocky Linux, and many other enterprise-focused Linux distributions. It bundles compiled binaries, configuration files, dependencies, metadata, and maintainer scripts into a single installable archive managed by the RPM system.

RPM was designed for enterprise stability, deterministic behavior, and strict versioning, making it ideal for large-scale deployments across servers and corporate environments.

Its combination of strong metadata, transaction safety, and integration with tools like YUM, DNF, and Zypper keeps RPM central to the Linux server ecosystem.

Mengapa RPM memisahkan metadata paket dari file program yang sebenarnya?

Metadata RPM mencakup versi, ketergantungan, catatan perubahan, informasi lisensi, aturan kepemilikan file, skrip instalasi/penghapusan, dan hash file. Ini memungkinkan pengelola paket gaya Red Hat untuk menganalisis paket tanpa membongkarnya.

Memisahkan metadata memastikan resolusi ketergantungan yang lebih cepat, audit sistem yang lebih dapat diandalkan, dan kontrol yang tepat atas pembaruan dan rollback.

Desain ini membuat RPM sangat cocok untuk infrastruktur tingkat perusahaan di mana konsistensi dan auditabilitas sangat penting.

Mengapa beberapa paket RPM gagal diinstal meskipun file tampak valid?

RPM secara ketat menegakkan ketergantungan. Jika pustaka atau versi yang diperlukan hilang, tidak kompatibel, atau diganti oleh paket lain, instalasi gagal untuk melindungi integritas sistem.

SELinux policies or file ownership conflicts can also block installation if the package attempts to overwrite protected paths.

RPM yang tidak ditandatangani atau ditandatangani dengan tidak benar mungkin ditolak tergantung pada kebijakan keamanan sistem.

Mengapa RPM menggunakan tanda tangan GPG lebih banyak daripada format DEB?

Ekosistem Red Hat sangat menekankan pada keamanan perusahaan, perlindungan rantai pasokan, dan asal perangkat lunak yang dapat diverifikasi.

Paket RPM umumnya menyertakan tanda tangan GPG yang tertanam, dan manajer paket menolak paket yang tidak ditandatangani ketika kebijakan sistem hanya memerlukan sumber yang terpercaya.

Penegakan tanda tangan yang kuat sangat penting untuk lingkungan di mana paket yang terkompromi dapat memiliki konsekuensi yang bencana.

Mengapa RPM lebih disukai untuk infrastruktur server besar?

RPM mendukung transaksi yang dapat diandalkan, artinya instalasi dan penghapusan baik selesai sepenuhnya atau kembali dengan bersih.

Ini terintegrasi dengan mulus dengan alat otomatisasi seperti Ansible, Satellite, Spacewalk, dan penyebaran berbasis Kubernetes.

Perilakunya yang dapat diprediksi dan kemampuan penguncian versi yang kuat sangat ideal untuk armada server dengan waktu aktif tinggi.

Apakah aman untuk mengekstrak file RPM secara manual?

Ya, alat seperti `rpm2cpio` atau `cpio` dapat mengekstrak konten RPM, memungkinkan pemeriksaan tanpa menginstal.

Namun, mengekstrak secara manual melewati pemeriksaan ketergantungan, eksekusi skrip, dan integrasi sistem, yang berarti aplikasi mungkin tidak berjalan dengan baik.

Ekstraksi manual paling cocok untuk pemulihan, rekayasa balik, atau memeriksa modifikasi dalam sebuah paket.

Mengapa paket RPM menyertakan skrip pre-install dan post-install?

Skrip ini melakukan tugas penting seperti memperbarui cache sistem, mengatur izin file, mengaktifkan layanan, atau memigrasi file konfigurasi.

Because RPM is often used for backend and server software, scriptlets ensure correct setup without requiring manual administrative steps.

Skrip yang kuat ini juga dapat memperkenalkan risiko jika RPM berasal dari sumber yang tidak terpercaya.

Mengapa distribusi berbasis RPM yang berbeda kadang-kadang memerlukan file RPM yang berbeda?

RPMs are tightly linked to system libraries, compiler versions, filesystem layouts, and SELinux policies that differ between distros.

Sebuah paket yang dibangun untuk Fedora mungkin menggunakan pustaka sistem yang lebih baru daripada yang dibangun untuk RHEL atau openSUSE, menjadikannya tidak kompatibel.

Kebijakan pengemasan spesifik vendor sering kali memerlukan pembuatan terpisah untuk setiap distribusi target.

Bisakah RPM dikonversi ke format lain seperti DEB?

Ya, alat seperti `alien` dapat mengonversi RPM menjadi paket DEB atau TGZ.

Paket yang dikonversi sering kehilangan metadata spesifik distro, detail ketergantungan, dan perilaku skrip, yang berpotensi menyebabkan masalah saat runtime.

Pengemasan asli selalu lebih baik untuk integrasi yang tepat dan stabilitas.

Apakah paket RPM mendukung kompresi lanjutan?

Ya, muatan RPM dapat menggunakan kompresi gzip, bzip2, xz, atau zstd tergantung pada distribusi dan versi RPM.

Sistem Red Hat dan Fedora yang lebih baru lebih memilih zstd karena keseimbangan yang sangat baik antara rasio kompresi dan kecepatan.

Kompresi mempengaruhi ukuran paket dan kecepatan dekompresi tetapi tidak mengubah cara RPM menginstal perangkat lunak.

Mengapa RPM menyimpan hash file dan informasi kepemilikan?

RPM menyertakan checksum dan metadata kepemilikan file untuk mendeteksi kerusakan, memverifikasi integritas, dan mencegah modifikasi yang tidak sah.

Commands like `rpm -V` allow administrators to verify system integrity against installed package manifests.

Ini membuat RPM sangat berharga dalam pengaturan yang berfokus pada keamanan dan perusahaan.

Why do RPM installations sometimes trigger SELinux warnings?

SELinux enforces mandatory access control policies that govern what files, services, and processes may do.

If an RPM installs files with incorrect labels or attempts unauthorized operations, SELinux can block or warn about them.

Properly built RPMs include SELinux file context rules to ensure seamless installation.

Mengapa paket RPM menegakkan jalur filesystem yang ketat?

Sebagian besar distro berbasis RPM mengikuti Standar Hierarki Sistem Berkas (FHS), yang mewajibkan lokasi yang konsisten untuk biner, pustaka, log, dan konfigurasi.

Kebijakan jalur yang ketat memastikan kompatibilitas antara paket, pemeliharaan sistem yang lebih mudah, dan perilaku peningkatan yang dapat diprediksi.

Praktik ini memudahkan migrasi, pengelompokan, dan otomatisasi di lingkungan server.

Bisakah RPM menginstal jenis aplikasi apa pun?

Ya, RPM dapat mendistribusikan alat CLI, GUI, pustaka, modul kernel, server, firmware, dan aplikasi berskala perusahaan.

Many major commercial Linux apps distribute RPM packages due to their strong integration with RHEL and SUSE ecosystems.

Fleksibilitas dan metadata yang kuat membuat RPM cocok untuk hampir semua jenis perangkat lunak.

Haruskah Anda menginstal paket RPM secara manual atau melalui manajer paket sistem?

Menggunakan manajer paket (DNF, YUM, Zypper) lebih aman karena ketergantungan, tanda tangan, dan konflik versi dikelola secara otomatis.

Instalasi RPM manual menggunakan `rpm -i` melewati pemeriksaan ketergantungan, meningkatkan risiko sistem yang rusak.

Untuk keamanan dan keandalan, selalu lebih baik memilih instalasi berbasis repositori kecuali instalasi RPM manual tidak dapat dihindari.