Konversi File ARJ Gratis
Alat konversi file ARJ profesional
Seret file Anda ke sini
atau klik untuk menjelajahi file
Format yang Didukung
Konversi antara semua format file utama dengan kualitas tinggi
Format Umum
ZIP Archive - universal compression format developed by Phil Katz (1989) supporting multiple compression methods. Built into Windows, macOS, and Linux. Uses DEFLATE algorithm providing good compression (40-60% reduction) with fast processing. Supports file encryption, split archives, and compression levels. Maximum compatibility across all platforms and devices. Perfect for file sharing, email attachments, web downloads, and general-purpose compression. Industry standard with virtually universal software support including built-in OS tools, mobile apps, and command-line utilities.
RAR Archive - proprietary format by Eugene Roshal (1993) offering superior compression ratios (10-20% better than ZIP) through advanced algorithms. Popular on Windows with WinRAR software. Supports recovery records for damaged archive repair, solid compression for better ratios, strong AES encryption, and split archives up to 8 exabytes. Excellent for long-term storage, large file collections, and backup scenarios. Common in software distribution and file sharing communities. Requires WinRAR or compatible software (not built into most systems).
7-Zip Archive - open-source format by Igor Pavlov (1999) providing the best compression ratio available (20-40% better than ZIP, 10-15% better than RAR). Uses LZMA and LZMA2 algorithms with strong AES-256 encryption. Supports huge file sizes (16 exabytes), multiple compression methods, solid compression, and self-extracting archives. Free from licensing restrictions and patent concerns. Perfect for maximizing storage efficiency, software distribution, and backup archives where size matters. Requires 7-Zip or compatible software but offers exceptional space savings.
Unix Formats
TAR Archive - Tape Archive format from Unix (1979) bundling multiple files and directories into single file without compression. Preserves file permissions, ownership, timestamps, and symbolic links critical for Unix systems. Often combined with compression (TAR.GZ, TAR.BZ2, TAR.XZ) for efficient distribution. Standard format for Linux software packages, system backups, and cross-platform file transfer. Essential for maintaining Unix file attributes. Works with streaming operations enabling network transfers and piping. Foundation of Unix/Linux backup and distribution systems.
GZIP/TGZ - GNU zip compression format (1992) using DEFLATE algorithm, standard compression for Linux and Unix systems. TGZ is TAR archive compressed with GZIP. Fast compression and decompression with moderate ratios (50-70% reduction for text). Single-file compression commonly paired with TAR for multi-file archives. Universal on Unix/Linux systems with built-in 'gzip' command. Perfect for log files, text data, Linux software distribution, and web server compression. Streaming-friendly enabling on-the-fly compression. Industry standard for Unix file compression since the 1990s.
BZIP2/TBZ2 - block-sorting compression format by Julian Seward (1996) offering better compression than GZIP (10-15% smaller) at the cost of slower processing. TBZ2 is TAR archive compressed with BZIP2. Uses Burrows-Wheeler transform achieving excellent ratios on text and source code. Popular for software distribution where size matters more than speed. Common in Linux package repositories and source code archives. Ideal for archival storage, software releases, and situations prioritizing compression over speed. Standard tool on most Unix/Linux systems.
XZ/TXZ - modern compression format (2009) using LZMA2 algorithm providing excellent compression ratios approaching 7Z quality. TXZ is TAR archive compressed with XZ. Superior to GZIP and BZIP2 with ratios similar to 7Z but as single-file stream. Becoming the new standard for Linux distributions and software packages. Supports multi-threading for faster processing. Perfect for large archives, software distribution, and modern Linux systems. Smaller download sizes for software packages while maintaining fast decompression. Default compression for many current Linux distributions.
{format_tar_7z_desc}
{format_tar_bz_desc}
{format_tar_lz_desc}
{format_tar_lzma_desc}
{format_tar_lzo_desc}
{format_tar_z_desc}
TGZ - TAR archive compressed with GZIP compression. Combines TAR's file bundling with GZIP's compression in single extension (.tgz instead of .tar.gz). Standard format for Linux software distribution and source code packages. Maintains Unix file permissions and attributes while reducing size 50-70%. Fast compression and decompression speeds. Universal compatibility on Unix/Linux systems. Perfect for software releases, backup archives, and cross-platform file transfer. Abbreviated form of TAR.GZ with identical functionality and structure.
TBZ2 - TAR archive compressed with BZIP2 compression. Better compression than TGZ (10-15% smaller) but slower processing. Uses Burrows-Wheeler block sorting for excellent text compression. Common in Linux distributions and software packages where size is critical. Maintains Unix file permissions and attributes. Perfect for source code distribution, archival storage, and bandwidth-limited transfers. Abbreviated form of TAR.BZ2 with identical functionality. Standard format for Gentoo Linux packages and large software archives.
TXZ - TAR archive compressed with XZ (LZMA2) compression. Modern format offering best compression ratios for TAR archives (better than TGZ and TBZ2). Fast decompression despite high compression. Supports multi-threading for improved performance. Becoming standard for Linux distributions (Arch, Slackware use TXZ). Maintains Unix permissions and symbolic links. Perfect for large software packages, system backups, and efficient storage. Abbreviated form of TAR.XZ representing the future of Unix archive compression.
LZMA/TAR.LZMA - Lempel-Ziv-Markov chain Algorithm compression format (2001) offering excellent compression ratios. TAR.LZMA combines TAR archiving with LZMA compression. Predecessor to XZ format using similar algorithm but older container format. Better compression than GZIP and BZIP2 but superseded by XZ/LZMA2. Still encountered in older Linux distributions and legacy archives. Slower compression than GZIP but better ratios (similar to XZ). Modern systems prefer TAR.XZ over TAR.LZMA. Legacy format for accessing older compressed archives from 2000s era.
LZO/TAR.LZO - Lempel-Ziv-Oberhumer compression format prioritizing speed over compression ratio. TAR.LZO is TAR archive compressed with LZO. Extremely fast compression and decompression (faster than GZIP) with moderate ratios (30-50% reduction). Popular in real-time applications, live systems, and scenarios requiring instant decompression. Used by some Linux kernels and embedded systems. Common in backup solutions prioritizing speed. Perfect for temporary compression, live CD/USB systems, and high-speed data transfer. Trade-off: larger files than GZIP/BZIP2/XZ but much faster processing.
Z/TAR.Z - Unix compress format from 1985 using LZW (Lempel-Ziv-Welch) algorithm. TAR.Z is TAR archive compressed with compress command. Historical Unix compression format predating GZIP. Patent issues (until 2003) led to GZIP replacing it. Legacy format with poor compression by modern standards. Rarely used today except in very old Unix systems and historical archives. If you encounter .Z or .tar.Z files, convert to modern formats (TAR.GZ, TAR.XZ) for better compression and wider support. Important for accessing ancient Unix archives from 1980s-1990s.
Format Khusus
ISO Image - ISO 9660 disk image format containing exact sector-by-sector copy of optical media (CD/DVD/Blu-ray). Standard format for distributing operating systems, software installations, and bootable media. Can be mounted as virtual drive without physical disc. Contains complete filesystem including boot sectors, metadata, and file structures. Essential for Linux distributions, system recovery media, and software archives. Used by burning software, virtual machines, and media servers. Universal standard with support in all major operating systems for mounting and burning.
Cabinet Archive - Microsoft's compression format for Windows installers and system files. Used extensively in Windows setup packages, driver installations, and system updates. Supports multiple compression algorithms (DEFLATE, LZX, Quantum), split archives, and digital signatures. Built into Windows with native extraction support. Common in software distribution for Windows applications, particularly older installers and Microsoft products. Maintains Windows-specific attributes and can store multiple files with folder structures. Part of Windows since 1996.
AR Archive - Unix archiver format (1970s) originally for creating library archives (.a files). Simple format storing multiple files with basic metadata (filename, modification time, permissions). Used primarily for static libraries in Unix development (.a extension). Foundation format for DEB packages (Debian packages are AR archives containing control and data). Minimal compression support (none by default). Essential for Unix library management and Debian package structure. Standard tool 'ar' included on all Unix/Linux systems. Simple and reliable for static file collections.
Debian Package - software package format for Debian, Ubuntu, and derivative Linux distributions. Contains compiled software, installation scripts, configuration files, and dependency metadata. Used by APT package manager (apt, apt-get commands). Actually a special AR archive containing control files and data archives. Essential format for Debian-based Linux software distribution. Includes pre/post-installation scripts, version management, and dependency resolution. Standard packaging for thousands of Ubuntu/Debian applications. Can be inspected and extracted as regular archive.
RPM Package - Red Hat Package Manager format for Red Hat, Fedora, CentOS, SUSE, and derivative Linux distributions. Contains compiled software, installation metadata, scripts, and dependency information. Used by YUM and DNF package managers. Includes GPG signature support for security verification. Standard for Red Hat Enterprise Linux ecosystem. Supports pre/post-installation scriptlets, file verification, and rollback capabilities. Essential format for RHEL-based Linux software distribution. Can be extracted as archive to inspect contents without installation.
JAR Archive - format Java Archive berdasarkan kompresi ZIP untuk pengemasan aplikasi Java. Berisi kelas Java yang telah dikompilasi (.class files), sumber daya aplikasi, dan metadata manifest. Format distribusi standar untuk aplikasi dan pustaka Java. Mendukung tanda tangan digital untuk verifikasi kode. Dapat dieksekusi (file JAR yang dapat dijalankan dengan manifest Main-Class). Sempurna untuk penyebaran aplikasi Java, distribusi pustaka, dan sistem plugin. Kompatibel dengan alat ZIP tetapi mencakup fitur khusus Java. Format penting untuk pengembangan dan penyebaran Java sejak 1996.
ARJ Archive - legacy DOS compression format by Robert Jung (1991). Popular in DOS and early Windows era for its good compression ratio and ability to create multi-volume archives. Supports encryption, damage protection, and archive comments. Largely obsolete today, replaced by ZIP, RAR, and 7Z. Still encountered in legacy systems and old software archives. Requires ARJ or compatible decompression software. Historical format important for accessing old DOS/Windows archives from 1990s. Better converted to modern formats for long-term accessibility.
LHA Archive - format kompresi Jepang (juga LZH) yang dikembangkan pada tahun 1988, sangat populer di Jepang dan di kalangan pengguna Amiga. Menggunakan algoritma kompresi LZSS dan LZHUF yang memberikan rasio yang baik. Umum untuk distribusi perangkat lunak Jepang pada tahun 1990-an. Mendukung header arsip, struktur direktori, dan atribut file. Format warisan yang sekarang sebagian besar telah digantikan oleh alternatif modern. Masih ditemukan dalam komputasi retro, arsip perangkat lunak Jepang, dan komunitas Amiga. Memerlukan perangkat lunak yang kompatibel LHA/LZH untuk ekstraksi. Penting untuk mengakses arsip perangkat lunak Jepang dan Amiga.
CPIO Archive - Copy In/Out archive format from Unix (1970s) for creating file archives. Simpler than TAR, often used for system backups and initramfs/initrd creation. Standard format for Linux initial RAM disk images. Supports multiple formats (binary, ASCII, CRC). Better handling of special files and device nodes than TAR. Common in system administration, bootloader configurations, and kernel initrd images. Universal on Unix/Linux systems. Essential for system-level archiving and embedded Linux systems. Works well for streaming operations.
Cara Mengonversi File
Unggah file Anda, pilih format keluaran, dan unduh file yang telah dikonversi secara instan. Konverter kami mendukung konversi batch dan mempertahankan kualitas tinggi.
Pertanyaan yang Sering Diajukan
Apa itu file ARJ dan mengapa sangat populer di awal kompresi PC?
An ARJ file is a compressed archive created using the ARJ (Archived by Robert Jung) compression system, a dominant format on DOS and early Windows PCs during the 1990s. It provided strong compression, multi-volume splitting, and advanced features long before ZIP tools offered similar capabilities.
ARJ mendapatkan reputasi di antara pengguna tingkat lanjut karena dapat menangani koleksi file besar, mendukung kompresi solid, dan menyertakan fitur pemulihan yang kuat pada saat disket floppy rentan dan lambat.
Meskipun sebagian besar telah digantikan oleh ZIP, RAR, dan 7Z, ARJ tetap penting secara historis, masih dapat diekstrak dengan alat modern, dan kadang-kadang digunakan dalam sistem perusahaan warisan, komputasi retro, dan alur kerja pemulihan arsip.
Mengapa file ARJ lebih baik dalam kompresi dibandingkan arsip ZIP awal?
ARJ menggunakan strategi kompresi Lempel–Ziv yang canggih dengan pemodelan yang lebih kuat dibandingkan versi PKZIP pada masa itu, menghasilkan arsip yang lebih kecil untuk teks, eksekutabel, dan distribusi perangkat lunak.
Ini mendukung kompresi solid, memungkinkan kompresor untuk menganalisis beberapa file sebagai satu aliran data, meningkatkan efisiensi untuk tipe file yang serupa.
ARJ juga memungkinkan parameter pengguna yang disesuaikan, memberikan kontrol kepada pengguna ahli atas rasio kompresi, ukuran kamus, dan perilaku file—menawarkan keuntungan yang tidak dapat ditandingi oleh ZIP pada saat itu.
Mengapa file ARJ terkadang diekstrak lambat di sistem modern?
Algoritma kompresi ARJ sangat membebani CPU pada masanya dan tetap lebih lambat dibandingkan format modern yang dioptimalkan seperti 7Z atau Zstandard.
Arsip solid memerlukan dekompresi segmen data besar sebelum mengakses file individu, yang meningkatkan waktu ekstraksi.
Format ini dirancang untuk prosesor yang lebih tua dan tidak dioptimalkan untuk multithreading atau arsitektur CPU modern.
Mengapa file ARJ terkadang menghasilkan kesalahan saat diekstrak?
Arsip ARJ sering menggunakan pemisahan disket floppy multi-volume; bagian yang hilang atau tidak lengkap dapat merusak seluruh arsip.
Kerusakan bit atau kerusakan pada media penyimpanan yang lebih tua—terutama disket vintage atau hard drive yang menua—dapat merusak header arsip.
Some extraction tools implement ARJ support poorly; using the official ARJ.EXE or high-quality tools like 7-Zip often resolves errors.
Mengapa beberapa arsip ARJ lebih besar dari yang diharapkan?
ARJ kesulitan dengan format yang sudah terkompresi seperti JPEG, MP4, ZIP, dan MP3, sering kali menambah overhead daripada mengurangi ukuran.
Kompresi solid bersifat opsional; jika dinonaktifkan, arsip mungkin terkompresi dengan buruk, terutama untuk banyak file kecil.
Desain warisan ARJ tidak selalu cocok dengan pola data entropi tinggi modern, membatasi efektivitasnya saat ini.
Apakah ARJ cukup aman untuk data sensitif?
ARJ menyertakan perlindungan kata sandi, tetapi enkripsinya sudah ketinggalan zaman dan rentan menurut standar kriptografi modern.
Alat brute-force sering kali dapat memecahkan enkripsi ARJ karena derivasi kunci yang lemah dan blok enkripsi yang kecil.
Jika Anda harus mengamankan data ARJ, gunakan enkripsi eksternal (seperti GPG) daripada mengandalkan sistem kata sandi bawaan arsip.
Mengapa file ARJ terkadang menimpa file saat diekstraksi?
ARJ secara default mengembalikan struktur direktori yang tepat dan mengganti file tanpa meminta konfirmasi, mencerminkan perilaku otomatisasi era DOS.
Beberapa extractor pihak ketiga meniru perilaku ini kecuali dikonfigurasi sebaliknya.
Ekstrak ke folder khusus atau gunakan bendera perlindungan penimpaan untuk menghindari penggantian yang tidak disengaja.
Mengapa file ARJ sulit dibuka di sistem operasi modern?
Native support disappeared decades ago, so Windows, macOS, and Linux no longer include ARJ extractors by default.
Beberapa alat hanya mendukung ARJ secara parsial, gagal pada arsip multi-volume atau solid.
Using 7-Zip, Unar, or the original ARJ.EXE (run through DOSBox if needed) offers the best compatibility.
Bisakah file ARJ diperbaiki jika rusak?
ARJ menyertakan fitur pemulihan dan toleransi kesalahan, tetapi hanya untuk arsip yang dibuat dengan catatan pemulihan.
Alat seperti ARJ.EXE dapat mencoba pemulihan blok, berguna untuk floppy disk lama atau media yang sebagian rusak.
Korsleting yang parah—terutama di header—sering kali membuat arsip tidak dapat dipulihkan.
Mengapa ARJ memudar dalam popularitas?
ZIP menjadi standar industri karena dukungan OS yang luas dan pengalaman pengguna yang lebih sederhana.
RAR dan 7Z melampaui ARJ dalam rasio kompresi, fitur, dan kemampuan pemulihan.
Desain ARJ yang berfokus pada DOS dan kinerja yang lambat membuatnya tidak praktis seiring perkembangan komputasi.
Mengapa beberapa sistem retro atau perusahaan masih memerlukan ARJ?
Skrip otomatisasi warisan, sistem bangun, dan penginstal dibangun di sekitar perilaku baris perintah ARJ.
Beberapa aplikasi perusahaan lama masih mendistribusikan patch atau modul dalam format ARJ.
Penggemar retro dan arsiparis mengandalkan ARJ untuk mengembalikan paket perangkat lunak yang akurat sesuai periode.
Mengapa arsip ARJ terkadang gagal saat volume yang terpisah digabungkan?
ARJ menggunakan pengindeksan volume berurutan yang ketat; satu bagian yang hilang atau salah urutan memutuskan rantai.
Variasi nama file (misalnya, .a01 vs .arj.001) dapat membingungkan extractor.
Membangun kembali penamaan volume yang tepat atau menggunakan ARJ.EXE biasanya menyelesaikan masalah urutan.
Mengapa ARJ sering muncul dalam laporan analisis malware?
Malware yang lebih tua menggunakan ARJ untuk mengemas payload karena kurang diawasi dibandingkan format ZIP atau RAR.
Packer eksekusi terkadang menyematkan arsip ARJ di dalam shell yang dapat mengekstrak sendiri.
Saat ini, ARJ muncul terutama dalam sampel warisan yang dianalisis untuk penelitian, bukan ancaman modern.
Apakah ARJ masih berguna hari ini?
Untuk komputasi retro dan lingkungan DOS, ARJ tetap otentik dan fungsional.
Perilaku kompresi yang dapat diprediksi bermanfaat saat merekonstruksi atau mengekstrak distribusi perangkat lunak warisan.
Untuk alur kerja modern, alternatif yang lebih baik ada, tetapi ARJ masih berfungsi dengan andal dalam konteks aslinya.
Haruskah Anda menggunakan ARJ untuk proyek saat ini?
Gunakan ARJ hanya jika berinteraksi dengan sistem warisan, media vintage, atau arsip sejarah yang secara eksplisit memerlukannya.
Untuk kebutuhan kompresi modern, lebih baik memilih format berbasis 7Z, ZIP, RAR, atau TAR untuk kinerja, keamanan, dan dukungan yang lebih baik.
ARJ tetap menjadi format yang menarik dan fungsional tetapi paling cocok untuk tugas retro dan khusus daripada penggunaan umum.