Konversi File AR Gratis
Alat konversi file AR profesional
Seret file Anda ke sini
atau klik untuk menjelajahi file
Format yang Didukung
Konversi antara semua format file utama dengan kualitas tinggi
Format Umum
ZIP Archive - universal compression format developed by Phil Katz (1989) supporting multiple compression methods. Built into Windows, macOS, and Linux. Uses DEFLATE algorithm providing good compression (40-60% reduction) with fast processing. Supports file encryption, split archives, and compression levels. Maximum compatibility across all platforms and devices. Perfect for file sharing, email attachments, web downloads, and general-purpose compression. Industry standard with virtually universal software support including built-in OS tools, mobile apps, and command-line utilities.
RAR Archive - proprietary format by Eugene Roshal (1993) offering superior compression ratios (10-20% better than ZIP) through advanced algorithms. Popular on Windows with WinRAR software. Supports recovery records for damaged archive repair, solid compression for better ratios, strong AES encryption, and split archives up to 8 exabytes. Excellent for long-term storage, large file collections, and backup scenarios. Common in software distribution and file sharing communities. Requires WinRAR or compatible software (not built into most systems).
7-Zip Archive - open-source format by Igor Pavlov (1999) providing the best compression ratio available (20-40% better than ZIP, 10-15% better than RAR). Uses LZMA and LZMA2 algorithms with strong AES-256 encryption. Supports huge file sizes (16 exabytes), multiple compression methods, solid compression, and self-extracting archives. Free from licensing restrictions and patent concerns. Perfect for maximizing storage efficiency, software distribution, and backup archives where size matters. Requires 7-Zip or compatible software but offers exceptional space savings.
Unix Formats
TAR Archive - Tape Archive format from Unix (1979) bundling multiple files and directories into single file without compression. Preserves file permissions, ownership, timestamps, and symbolic links critical for Unix systems. Often combined with compression (TAR.GZ, TAR.BZ2, TAR.XZ) for efficient distribution. Standard format for Linux software packages, system backups, and cross-platform file transfer. Essential for maintaining Unix file attributes. Works with streaming operations enabling network transfers and piping. Foundation of Unix/Linux backup and distribution systems.
GZIP/TGZ - GNU zip compression format (1992) using DEFLATE algorithm, standard compression for Linux and Unix systems. TGZ is TAR archive compressed with GZIP. Fast compression and decompression with moderate ratios (50-70% reduction for text). Single-file compression commonly paired with TAR for multi-file archives. Universal on Unix/Linux systems with built-in 'gzip' command. Perfect for log files, text data, Linux software distribution, and web server compression. Streaming-friendly enabling on-the-fly compression. Industry standard for Unix file compression since the 1990s.
BZIP2/TBZ2 - block-sorting compression format by Julian Seward (1996) offering better compression than GZIP (10-15% smaller) at the cost of slower processing. TBZ2 is TAR archive compressed with BZIP2. Uses Burrows-Wheeler transform achieving excellent ratios on text and source code. Popular for software distribution where size matters more than speed. Common in Linux package repositories and source code archives. Ideal for archival storage, software releases, and situations prioritizing compression over speed. Standard tool on most Unix/Linux systems.
XZ/TXZ - modern compression format (2009) using LZMA2 algorithm providing excellent compression ratios approaching 7Z quality. TXZ is TAR archive compressed with XZ. Superior to GZIP and BZIP2 with ratios similar to 7Z but as single-file stream. Becoming the new standard for Linux distributions and software packages. Supports multi-threading for faster processing. Perfect for large archives, software distribution, and modern Linux systems. Smaller download sizes for software packages while maintaining fast decompression. Default compression for many current Linux distributions.
{format_tar_7z_desc}
{format_tar_bz_desc}
{format_tar_lz_desc}
{format_tar_lzma_desc}
{format_tar_lzo_desc}
{format_tar_z_desc}
TGZ - TAR archive compressed with GZIP compression. Combines TAR's file bundling with GZIP's compression in single extension (.tgz instead of .tar.gz). Standard format for Linux software distribution and source code packages. Maintains Unix file permissions and attributes while reducing size 50-70%. Fast compression and decompression speeds. Universal compatibility on Unix/Linux systems. Perfect for software releases, backup archives, and cross-platform file transfer. Abbreviated form of TAR.GZ with identical functionality and structure.
TBZ2 - TAR archive compressed with BZIP2 compression. Better compression than TGZ (10-15% smaller) but slower processing. Uses Burrows-Wheeler block sorting for excellent text compression. Common in Linux distributions and software packages where size is critical. Maintains Unix file permissions and attributes. Perfect for source code distribution, archival storage, and bandwidth-limited transfers. Abbreviated form of TAR.BZ2 with identical functionality. Standard format for Gentoo Linux packages and large software archives.
TXZ - TAR archive compressed with XZ (LZMA2) compression. Modern format offering best compression ratios for TAR archives (better than TGZ and TBZ2). Fast decompression despite high compression. Supports multi-threading for improved performance. Becoming standard for Linux distributions (Arch, Slackware use TXZ). Maintains Unix permissions and symbolic links. Perfect for large software packages, system backups, and efficient storage. Abbreviated form of TAR.XZ representing the future of Unix archive compression.
LZMA/TAR.LZMA - Lempel-Ziv-Markov chain Algorithm compression format (2001) offering excellent compression ratios. TAR.LZMA combines TAR archiving with LZMA compression. Predecessor to XZ format using similar algorithm but older container format. Better compression than GZIP and BZIP2 but superseded by XZ/LZMA2. Still encountered in older Linux distributions and legacy archives. Slower compression than GZIP but better ratios (similar to XZ). Modern systems prefer TAR.XZ over TAR.LZMA. Legacy format for accessing older compressed archives from 2000s era.
LZO/TAR.LZO - Lempel-Ziv-Oberhumer compression format prioritizing speed over compression ratio. TAR.LZO is TAR archive compressed with LZO. Extremely fast compression and decompression (faster than GZIP) with moderate ratios (30-50% reduction). Popular in real-time applications, live systems, and scenarios requiring instant decompression. Used by some Linux kernels and embedded systems. Common in backup solutions prioritizing speed. Perfect for temporary compression, live CD/USB systems, and high-speed data transfer. Trade-off: larger files than GZIP/BZIP2/XZ but much faster processing.
Z/TAR.Z - Unix compress format from 1985 using LZW (Lempel-Ziv-Welch) algorithm. TAR.Z is TAR archive compressed with compress command. Historical Unix compression format predating GZIP. Patent issues (until 2003) led to GZIP replacing it. Legacy format with poor compression by modern standards. Rarely used today except in very old Unix systems and historical archives. If you encounter .Z or .tar.Z files, convert to modern formats (TAR.GZ, TAR.XZ) for better compression and wider support. Important for accessing ancient Unix archives from 1980s-1990s.
Format Khusus
ISO Image - ISO 9660 disk image format containing exact sector-by-sector copy of optical media (CD/DVD/Blu-ray). Standard format for distributing operating systems, software installations, and bootable media. Can be mounted as virtual drive without physical disc. Contains complete filesystem including boot sectors, metadata, and file structures. Essential for Linux distributions, system recovery media, and software archives. Used by burning software, virtual machines, and media servers. Universal standard with support in all major operating systems for mounting and burning.
Cabinet Archive - Microsoft's compression format for Windows installers and system files. Used extensively in Windows setup packages, driver installations, and system updates. Supports multiple compression algorithms (DEFLATE, LZX, Quantum), split archives, and digital signatures. Built into Windows with native extraction support. Common in software distribution for Windows applications, particularly older installers and Microsoft products. Maintains Windows-specific attributes and can store multiple files with folder structures. Part of Windows since 1996.
AR Archive - Unix archiver format (1970s) originally for creating library archives (.a files). Simple format storing multiple files with basic metadata (filename, modification time, permissions). Used primarily for static libraries in Unix development (.a extension). Foundation format for DEB packages (Debian packages are AR archives containing control and data). Minimal compression support (none by default). Essential for Unix library management and Debian package structure. Standard tool 'ar' included on all Unix/Linux systems. Simple and reliable for static file collections.
Debian Package - software package format for Debian, Ubuntu, and derivative Linux distributions. Contains compiled software, installation scripts, configuration files, and dependency metadata. Used by APT package manager (apt, apt-get commands). Actually a special AR archive containing control files and data archives. Essential format for Debian-based Linux software distribution. Includes pre/post-installation scripts, version management, and dependency resolution. Standard packaging for thousands of Ubuntu/Debian applications. Can be inspected and extracted as regular archive.
RPM Package - Red Hat Package Manager format for Red Hat, Fedora, CentOS, SUSE, and derivative Linux distributions. Contains compiled software, installation metadata, scripts, and dependency information. Used by YUM and DNF package managers. Includes GPG signature support for security verification. Standard for Red Hat Enterprise Linux ecosystem. Supports pre/post-installation scriptlets, file verification, and rollback capabilities. Essential format for RHEL-based Linux software distribution. Can be extracted as archive to inspect contents without installation.
JAR Archive - format Java Archive berdasarkan kompresi ZIP untuk pengemasan aplikasi Java. Berisi kelas Java yang telah dikompilasi (.class files), sumber daya aplikasi, dan metadata manifest. Format distribusi standar untuk aplikasi dan pustaka Java. Mendukung tanda tangan digital untuk verifikasi kode. Dapat dieksekusi (file JAR yang dapat dijalankan dengan manifest Main-Class). Sempurna untuk penyebaran aplikasi Java, distribusi pustaka, dan sistem plugin. Kompatibel dengan alat ZIP tetapi mencakup fitur khusus Java. Format penting untuk pengembangan dan penyebaran Java sejak 1996.
ARJ Archive - legacy DOS compression format by Robert Jung (1991). Popular in DOS and early Windows era for its good compression ratio and ability to create multi-volume archives. Supports encryption, damage protection, and archive comments. Largely obsolete today, replaced by ZIP, RAR, and 7Z. Still encountered in legacy systems and old software archives. Requires ARJ or compatible decompression software. Historical format important for accessing old DOS/Windows archives from 1990s. Better converted to modern formats for long-term accessibility.
LHA Archive - format kompresi Jepang (juga LZH) yang dikembangkan pada tahun 1988, sangat populer di Jepang dan di kalangan pengguna Amiga. Menggunakan algoritma kompresi LZSS dan LZHUF yang memberikan rasio yang baik. Umum untuk distribusi perangkat lunak Jepang pada tahun 1990-an. Mendukung header arsip, struktur direktori, dan atribut file. Format warisan yang sekarang sebagian besar telah digantikan oleh alternatif modern. Masih ditemukan dalam komputasi retro, arsip perangkat lunak Jepang, dan komunitas Amiga. Memerlukan perangkat lunak yang kompatibel LHA/LZH untuk ekstraksi. Penting untuk mengakses arsip perangkat lunak Jepang dan Amiga.
CPIO Archive - Copy In/Out archive format from Unix (1970s) for creating file archives. Simpler than TAR, often used for system backups and initramfs/initrd creation. Standard format for Linux initial RAM disk images. Supports multiple formats (binary, ASCII, CRC). Better handling of special files and device nodes than TAR. Common in system administration, bootloader configurations, and kernel initrd images. Universal on Unix/Linux systems. Essential for system-level archiving and embedded Linux systems. Works well for streaming operations.
Cara Mengonversi File
Unggah file Anda, pilih format keluaran, dan unduh file yang telah dikonversi secara instan. Konverter kami mendukung konversi batch dan mempertahankan kualitas tinggi.
Pertanyaan yang Sering Diajukan
What is an AR file and why is it still used on Unix-like systems?
An AR file is a simple, fixed-format archive used primarily on Unix and Linux systems. It predates most modern compression formats and was designed as a fast, deterministic way to bundle multiple files into a single container without sophisticated compression or metadata.
Strukturnya yang dapat diprediksi menjadikannya ideal untuk menyimpan file objek dan pustaka statis dalam rantai alat pemrograman. Faktanya, sebagian besar pustaka statis `.a` dalam C/C++ hanyalah arsip AR dengan file objek yang dikompilasi di dalamnya.
Meskipun sudah tua, AR bertahan karena rantai alat dan utilitas sistem tingkat rendah bergantung pada kesederhanaannya, kecepatan, dan format yang tidak berubah, memastikan kompatibilitas jangka panjang di seluruh sistem.
Why does AR use such a minimalistic structure compared to modern archive formats?
AR was created in an era when simplicity, speed, and minimal disk usage were more important than features like compression or rich metadata.
Header lebar tetapnya, tabel file yang sederhana, dan tata letak yang dapat diprediksi memungkinkan perangkat lunak seperti linker, compiler, dan sistem build untuk mem-parsing dan memanipulasi arsip dengan sangat cepat.
The minimalism is intentional: AR is meant for tooling, not general-purpose compressed archiving like TAR or ZIP.
Why do AR archives show up as .a files in Linux development?
Static libraries in C, C++, and many other languages use the `.a` extension, and these libraries are literally AR archives containing multiple `.o` (object) files.
Kontainer AR bertindak sebagai folder sederhana untuk unit kode yang dikompilasi, memungkinkan linker menarik hanya simbol yang dibutuhkan dari setiap file objek.
This approach keeps static libraries efficient, modular, and easy to maintain within Unix build systems.
Mengapa file AR tidak dapat menyimpan struktur direktori atau kompresi?
AR tidak pernah dimaksudkan untuk menjadi kontainer filesystem penuh; setiap entri adalah file datar tunggal tanpa hierarki.
Format ini mendahului standar kompresi umum, jadi ia mengasumsikan penyimpanan mentah daripada kontainer terkompresi.
Kompresi diharapkan terjadi secara eksternal menggunakan alat seperti gzip atau xz dalam alur kerja selanjutnya—misalnya, paket `.deb` menggunakan AR tetapi mengompresi kontennya secara terpisah.
Mengapa AR digunakan di dalam paket Debian?
A `.deb` package is actually an AR archive containing three files: `debian-binary`, `control.tar.*`, and `data.tar.*`.
AR menyediakan kontainer tulang punggung yang stabil yang dapat diandalkan oleh alat Debian tanpa khawatir tentang perubahan format atau pilihan kompresi.
Kekakuannya menjadikannya sempurna untuk sistem pengemasan di mana konsistensi dan parsing yang dapat diprediksi lebih penting daripada fitur.
Apakah aman untuk mengekstrak atau memodifikasi file AR secara manual?
Ya, AR dapat diperiksa dengan aman menggunakan alat seperti `ar`, `bsdtar`, atau `binutils` tanpa mengeksekusi kode apapun.
Namun, memodifikasi file AR dengan cara yang tidak diharapkan oleh compiler atau manajer paket dapat merusak pustaka statis atau paket Debian.
Pengeditan manual sebaiknya disimpan untuk debugging, rekayasa balik, atau pekerjaan pengembangan tingkat rendah.
Mengapa AR masih penting jika format arsip yang lebih baru ada?
AR sangat tertanam dalam alur kerja pengembangan perangkat lunak, terutama dalam GNU binutils dan toolchain linker.
Formatnya yang tidak berubah menjamin kompatibilitas jangka panjang di berbagai arsitektur, compiler, dan sistem build.
Modern formats offer more features, but none match AR’s deterministic behavior needed for static libraries.
Mengapa file AR terkadang mengandung indeks simbol?
Banyak pustaka statis `.a` menyertakan tabel simbol khusus (misalnya, `__.SYMDEF`) yang mempercepat penghubungan dengan memungkinkan linker untuk dengan cepat memetakan simbol ke file objek.
Ini secara signifikan mengurangi waktu penghubungan, terutama untuk basis kode besar dengan banyak entri objek.
Alat seperti `ranlib` menghasilkan atau memperbarui indeks simbol ini untuk memastikan perilaku penghubungan yang tepat.
Apakah arsip AR mudah rusak?
AR menggunakan header panjang tetap dan tidak memiliki checksum global, jadi kerusakan pada header manapun dapat mencegah alat dari parsing entri berikutnya.
Namun, kesederhanaannya berarti kerusakan mudah terdeteksi dan sering kali mudah diperbaiki secara manual.
Untuk artefak kritis seperti pustaka statis, pengembang biasanya menghasilkan kembali file AR selama proses build daripada memperbaikinya secara manual.
Apakah file AR mendukung file besar atau metadata modern?
Format AR klasik memiliki batasan, termasuk nama file 16 karakter, bidang metadata terbatas, dan dukungan terbatas untuk ukuran file besar.
Format AR yang diperluas ada (GNU, BSD, SVR4) untuk mengatasi batasan nama file dan memungkinkan arsip yang lebih besar.
Meskipun ada ekstensi, AR tetap jauh lebih primitif dibandingkan dengan TAR, ZIP, atau 7Z.
Mengapa arsip AR digunakan dalam toolchain embedded dan cross-compilation?
Embedded toolchains require deterministic, fast, and low-overhead formats—attributes where AR excels.
Penghubungan statis umum di sistem embedded, dan pustaka `.a` yang dikemas melalui AR adalah pusat dari alur kerja tersebut.
Menggunakan AR memastikan kompatibilitas di seluruh cross-compiler dan arsitektur perangkat keras.
Apakah file AR dapat menyimpan data biner dengan andal?
Ya, AR menyimpan aliran file mentah tanpa mengubah struktur biner mereka, menjadikannya cocok untuk menggabungkan file objek dan kode mesin.
Karena AR tidak melakukan kompresi atau pengkodean, tidak ada transformasi tingkat bit yang terjadi.
Keandalan ini adalah salah satu alasan mengapa compiler masih bergantung pada AR untuk pustaka statis.
How do AR versions differ across Unix variants?
System V, BSD, dan GNU masing-masing memiliki varian AR sendiri dengan perbedaan header kecil dan fitur tambahan seperti nama file panjang.
GNU and BSD AR support extended metadata fields that overcome original limitations while still maintaining backward compatibility.
Sebagian besar sistem build dan linker secara otomatis menangani versi ini secara transparan.
Apakah AR cocok untuk pengarsipan tujuan umum?
Tidak—AR tidak memiliki kompresi, direktori, enkripsi, cap waktu, atau fleksibilitas yang diharapkan dari format arsip modern.
Kasus penggunaannya sangat sempit dan fokus pada alur kerja pengembangan tingkat sistem.
Untuk pengarsipan sehari-hari, format seperti TAR, ZIP, atau 7Z jauh lebih sesuai.
Kapan Anda harus menggunakan AR daripada format lain?
Saat membuat atau mengelola pustaka statis (`.a` files) atau bekerja dengan toolchain yang memerlukan arsip AR.
Saat membangun atau memeriksa paket `.deb`, karena AR adalah kontainer dasar.
When interacting with low-level Unix development environments where simplicity, speed, and deterministic formats are essential.