Конвертировать файлы CPIO бесплатно

Профессиональный инструмент конвертации файлов CPIO

Перетащите ваши файлы сюда

или нажмите, чтобы выбрать файлы

Максимальный размер файла: 100MB
10М+ Файлов Конвертировано
100% Бесплатно Навсегда
256-битный Безопасное Шифрование

Поддерживаемые Форматы

Конвертируйте между всеми основными форматами файлов с высоким качеством

Общие Форматы

ZIP

ZIP Archive - universal compression format developed by Phil Katz (1989) supporting multiple compression methods. Built into Windows, macOS, and Linux. Uses DEFLATE algorithm providing good compression (40-60% reduction) with fast processing. Supports file encryption, split archives, and compression levels. Maximum compatibility across all platforms and devices. Perfect for file sharing, email attachments, web downloads, and general-purpose compression. Industry standard with virtually universal software support including built-in OS tools, mobile apps, and command-line utilities.

RAR

RAR Archive - proprietary format by Eugene Roshal (1993) offering superior compression ratios (10-20% better than ZIP) through advanced algorithms. Popular on Windows with WinRAR software. Supports recovery records for damaged archive repair, solid compression for better ratios, strong AES encryption, and split archives up to 8 exabytes. Excellent for long-term storage, large file collections, and backup scenarios. Common in software distribution and file sharing communities. Requires WinRAR or compatible software (not built into most systems).

7Z

7-Zip Archive - open-source format by Igor Pavlov (1999) providing the best compression ratio available (20-40% better than ZIP, 10-15% better than RAR). Uses LZMA and LZMA2 algorithms with strong AES-256 encryption. Supports huge file sizes (16 exabytes), multiple compression methods, solid compression, and self-extracting archives. Free from licensing restrictions and patent concerns. Perfect for maximizing storage efficiency, software distribution, and backup archives where size matters. Requires 7-Zip or compatible software but offers exceptional space savings.

Unix Formats

TAR

TAR Archive - Tape Archive format from Unix (1979) bundling multiple files and directories into single file without compression. Preserves file permissions, ownership, timestamps, and symbolic links critical for Unix systems. Often combined with compression (TAR.GZ, TAR.BZ2, TAR.XZ) for efficient distribution. Standard format for Linux software packages, system backups, and cross-platform file transfer. Essential for maintaining Unix file attributes. Works with streaming operations enabling network transfers and piping. Foundation of Unix/Linux backup and distribution systems.

GZ/TGZ

GZIP/TGZ - GNU zip compression format (1992) using DEFLATE algorithm, standard compression for Linux and Unix systems. TGZ is TAR archive compressed with GZIP. Fast compression and decompression with moderate ratios (50-70% reduction for text). Single-file compression commonly paired with TAR for multi-file archives. Universal on Unix/Linux systems with built-in 'gzip' command. Perfect for log files, text data, Linux software distribution, and web server compression. Streaming-friendly enabling on-the-fly compression. Industry standard for Unix file compression since the 1990s.

BZ2/TBZ2

BZIP2/TBZ2 - block-sorting compression format by Julian Seward (1996) offering better compression than GZIP (10-15% smaller) at the cost of slower processing. TBZ2 is TAR archive compressed with BZIP2. Uses Burrows-Wheeler transform achieving excellent ratios on text and source code. Popular for software distribution where size matters more than speed. Common in Linux package repositories and source code archives. Ideal for archival storage, software releases, and situations prioritizing compression over speed. Standard tool on most Unix/Linux systems.

XZ/TXZ

XZ/TXZ - modern compression format (2009) using LZMA2 algorithm providing excellent compression ratios approaching 7Z quality. TXZ is TAR archive compressed with XZ. Superior to GZIP and BZIP2 with ratios similar to 7Z but as single-file stream. Becoming the new standard for Linux distributions and software packages. Supports multi-threading for faster processing. Perfect for large archives, software distribution, and modern Linux systems. Smaller download sizes for software packages while maintaining fast decompression. Default compression for many current Linux distributions.

TAR.7Z

{format_tar_7z_desc}

TAR.BZ

{format_tar_bz_desc}

TAR.LZ

{format_tar_lz_desc}

TAR.LZMA

{format_tar_lzma_desc}

TAR.LZO

{format_tar_lzo_desc}

TAR.Z

{format_tar_z_desc}

TGZ

TGZ - TAR archive compressed with GZIP compression. Combines TAR's file bundling with GZIP's compression in single extension (.tgz instead of .tar.gz). Standard format for Linux software distribution and source code packages. Maintains Unix file permissions and attributes while reducing size 50-70%. Fast compression and decompression speeds. Universal compatibility on Unix/Linux systems. Perfect for software releases, backup archives, and cross-platform file transfer. Abbreviated form of TAR.GZ with identical functionality and structure.

TBZ2

TBZ2 - TAR archive compressed with BZIP2 compression. Better compression than TGZ (10-15% smaller) but slower processing. Uses Burrows-Wheeler block sorting for excellent text compression. Common in Linux distributions and software packages where size is critical. Maintains Unix file permissions and attributes. Perfect for source code distribution, archival storage, and bandwidth-limited transfers. Abbreviated form of TAR.BZ2 with identical functionality. Standard format for Gentoo Linux packages and large software archives.

TXZ

TXZ - TAR archive compressed with XZ (LZMA2) compression. Modern format offering best compression ratios for TAR archives (better than TGZ and TBZ2). Fast decompression despite high compression. Supports multi-threading for improved performance. Becoming standard for Linux distributions (Arch, Slackware use TXZ). Maintains Unix permissions and symbolic links. Perfect for large software packages, system backups, and efficient storage. Abbreviated form of TAR.XZ representing the future of Unix archive compression.

LZMA

LZMA/TAR.LZMA - Lempel-Ziv-Markov chain Algorithm compression format (2001) offering excellent compression ratios. TAR.LZMA combines TAR archiving with LZMA compression. Predecessor to XZ format using similar algorithm but older container format. Better compression than GZIP and BZIP2 but superseded by XZ/LZMA2. Still encountered in older Linux distributions and legacy archives. Slower compression than GZIP but better ratios (similar to XZ). Modern systems prefer TAR.XZ over TAR.LZMA. Legacy format for accessing older compressed archives from 2000s era.

LZO

LZO/TAR.LZO - Lempel-Ziv-Oberhumer compression format prioritizing speed over compression ratio. TAR.LZO is TAR archive compressed with LZO. Extremely fast compression and decompression (faster than GZIP) with moderate ratios (30-50% reduction). Popular in real-time applications, live systems, and scenarios requiring instant decompression. Used by some Linux kernels and embedded systems. Common in backup solutions prioritizing speed. Perfect for temporary compression, live CD/USB systems, and high-speed data transfer. Trade-off: larger files than GZIP/BZIP2/XZ but much faster processing.

Z

Z/TAR.Z - Unix compress format from 1985 using LZW (Lempel-Ziv-Welch) algorithm. TAR.Z is TAR archive compressed with compress command. Historical Unix compression format predating GZIP. Patent issues (until 2003) led to GZIP replacing it. Legacy format with poor compression by modern standards. Rarely used today except in very old Unix systems and historical archives. If you encounter .Z or .tar.Z files, convert to modern formats (TAR.GZ, TAR.XZ) for better compression and wider support. Important for accessing ancient Unix archives from 1980s-1990s.

Специализированные Форматы

ISO

ISO Image - ISO 9660 disk image format containing exact sector-by-sector copy of optical media (CD/DVD/Blu-ray). Standard format for distributing operating systems, software installations, and bootable media. Can be mounted as virtual drive without physical disc. Contains complete filesystem including boot sectors, metadata, and file structures. Essential for Linux distributions, system recovery media, and software archives. Used by burning software, virtual machines, and media servers. Universal standard with support in all major operating systems for mounting and burning.

CAB

Cabinet Archive - Microsoft's compression format for Windows installers and system files. Used extensively in Windows setup packages, driver installations, and system updates. Supports multiple compression algorithms (DEFLATE, LZX, Quantum), split archives, and digital signatures. Built into Windows with native extraction support. Common in software distribution for Windows applications, particularly older installers and Microsoft products. Maintains Windows-specific attributes and can store multiple files with folder structures. Part of Windows since 1996.

AR

AR Archive - Unix archiver format (1970s) originally for creating library archives (.a files). Simple format storing multiple files with basic metadata (filename, modification time, permissions). Used primarily for static libraries in Unix development (.a extension). Foundation format for DEB packages (Debian packages are AR archives containing control and data). Minimal compression support (none by default). Essential for Unix library management and Debian package structure. Standard tool 'ar' included on all Unix/Linux systems. Simple and reliable for static file collections.

DEB

Debian Package - software package format for Debian, Ubuntu, and derivative Linux distributions. Contains compiled software, installation scripts, configuration files, and dependency metadata. Used by APT package manager (apt, apt-get commands). Actually a special AR archive containing control files and data archives. Essential format for Debian-based Linux software distribution. Includes pre/post-installation scripts, version management, and dependency resolution. Standard packaging for thousands of Ubuntu/Debian applications. Can be inspected and extracted as regular archive.

RPM

RPM Package - Red Hat Package Manager format for Red Hat, Fedora, CentOS, SUSE, and derivative Linux distributions. Contains compiled software, installation metadata, scripts, and dependency information. Used by YUM and DNF package managers. Includes GPG signature support for security verification. Standard for Red Hat Enterprise Linux ecosystem. Supports pre/post-installation scriptlets, file verification, and rollback capabilities. Essential format for RHEL-based Linux software distribution. Can be extracted as archive to inspect contents without installation.

JAR

JAR Архив - формат Java Archive, основанный на сжатии ZIP для упаковки Java-приложений. Содержит скомпилированные Java-классы (.class файлы), ресурсы приложения и метаданные манифеста. Стандартный формат распространения для Java-приложений и библиотек. Поддерживает цифровые подписи для проверки кода. Может быть исполняемым (файлы JAR с Main-Class в манифесте). Идеален для развертывания Java-приложений, распространения библиотек и систем плагинов. Совместим с инструментами ZIP, но включает специфические для Java функции. Важный формат для разработки и развертывания Java с 1996 года.

ARJ

ARJ Archive - legacy DOS compression format by Robert Jung (1991). Popular in DOS and early Windows era for its good compression ratio and ability to create multi-volume archives. Supports encryption, damage protection, and archive comments. Largely obsolete today, replaced by ZIP, RAR, and 7Z. Still encountered in legacy systems and old software archives. Requires ARJ or compatible decompression software. Historical format important for accessing old DOS/Windows archives from 1990s. Better converted to modern formats for long-term accessibility.

LHA

LHA Архив - японский формат сжатия (также LZH), разработанный в 1988 году, чрезвычайно популярен в Японии и среди пользователей Amiga. Использует алгоритмы сжатия LZSS и LZHUF, обеспечивая хорошие коэффициенты. Распространен для распространения японского программного обеспечения в 1990-х. Поддерживает заголовки архивов, структуры каталогов и атрибуты файлов. Устаревший формат, который в настоящее время в основном заменен современными альтернативами. Все еще встречается в ретро-компьютинге, японских программных архивах и сообществах Amiga. Требует программного обеспечения, совместимого с LHA/LZH, для извлечения. Важно для доступа к японским и Amiga программным архивам.

CPIO

CPIO Archive - Copy In/Out archive format from Unix (1970s) for creating file archives. Simpler than TAR, often used for system backups and initramfs/initrd creation. Standard format for Linux initial RAM disk images. Supports multiple formats (binary, ASCII, CRC). Better handling of special files and device nodes than TAR. Common in system administration, bootloader configurations, and kernel initrd images. Universal on Unix/Linux systems. Essential for system-level archiving and embedded Linux systems. Works well for streaming operations.

Как Конвертировать Файлы

Загрузите ваши файлы, выберите выходной формат и мгновенно скачайте конвертированные файлы. Наш конвертер поддерживает пакетную конвертацию и сохраняет высокое качество.

Часто Задаваемые Вопросы

What is a CPIO file and why is it still used in Unix systems today?

A CPIO file is an archive format originating from early Unix systems, designed to store collections of files, directory structures, and metadata in a simple, sequential layout. Unlike ZIP or TAR, CPIO does not include built-in compression—it's purely a packaging format. Compression is typically applied externally through tools like gzip, bzip2, or xz, producing files such as .cpio.gz, .cpio.bz2, or .cpio.xz.

CPIO is historically important because it was built into the original Unix System V toolchain and became foundational for installer payloads, boot images, and system recovery utilities. Its predictable structure and portability kept it relevant even as newer archive formats emerged.

Today CPIO remains heavily used in Linux initramfs images, RPM package internals, firmware distributions, and enterprise deployment systems where small, strict, metadata-preserving archives are preferred over more complex formats.

Why is CPIO commonly used inside Linux initramfs images?

CPIO можно передавать напрямую в память во время загрузки, что делает его идеальным для initramfs, который должен быстро загружать небольшие корневые файловые системы без зависимости от внешних инструментов.

Поскольку формат прост и линейный, ядро может распаковать его с минимальным кодом, уменьшая сложность и поверхность атаки во время ранней загрузки.

CPIO сохраняет точные разрешения файлов, символические ссылки и права собственности — все это критически важно для загрузочных сред, которые требуют точных метаданных для запуска системы.

Почему у CPIO нет встроенного сжатия?

CPIO был создан задолго до того, как сжатие стало стандартным требованием для архивирования, поэтому его разработчики сосредоточились на сохранении метаданных и структуры, а не на уменьшении размера файла.

Unix philosophy favored separation of responsibilities; compression was left to external tools such as compress, gzip, and later bzip2 or xz.

Это разделение позволяет разработчикам выбирать, какой алгоритм сжатия соответствует их потребностям, не меняя внутреннюю структуру архива.

Почему некоторые файлы CPIO не удается извлечь правильно?

У CPIO есть несколько вариантов формата (бинарный, старый ASCII, новый ASCII, CRC, SVR4), и не все экстракторы поддерживают их одинаково. Использование неправильного режима может вызвать проблемы с разбором заголовка.

Повреждение в сжатых архивах CPIO — особенно .cpio.xz или .cpio.gz — может сломать слой декомпрессии до начала извлечения.

Improperly generated archives, including mismatched file lengths or incorrect headers, may fail to extract on strict Unix utilities even if some tools accept them.

Почему CPIO предпочитают TAR в некоторых корпоративных системах упаковки?

Линейная структура CPIO и предсказуемая обработка метаданных упрощают автоматизированным инструментам сборки программное создание и чтение архивов.

Исторически пакеты RPM использовали CPIO для своей архивной нагрузки, поскольку его структура на основе записей упрощает метаданные зависимостей и извлечение.

Его детерминированная компоновка ценится в системах, требующих воспроизводимых сборок или последовательных выходов упаковки байт за байтом.

Безопасен ли CPIO для чувствительных архивных нужд?

CPIO сам по себе не предоставляет шифрования, аутентификации или механизмов целостности — он полностью полагается на внешние обертки сжатия или слои безопасности.

Архивы могут быть подвержены подделке, если они не завернуты в структуры RPM с подписью GPG или зашифрованные контейнеры.

Для безопасного использования зашифруйте файл CPIO с помощью GPG или встраивайте его в криптографически защищенный пакет, а не полагайтесь только на формат.

Почему извлечение архива CPIO иногда перезаписывает системные файлы?

CPIO, как и TAR, восстанавливает полные пути точно так, как они хранились в архиве. Если включены абсолютные пути или системные директории, они заменяются без предупреждения.

Старые варианты CPIO не имеют современных функций безопасности, таких как очистка путей или защита от перезаписи.

Чтобы избежать перезаписи важных системных файлов, всегда извлекайте архивы CPIO в изолированные директории или используйте флаги, которые ограничивают разрешение путей.

Why do Linux developers still generate CPIO archives manually?

Many Linux boot and installer systems depend on CPIO for initramfs generation, making it essential for kernel development, embedded devices, and bootloaders.

Его строгий дизайн обеспечивает предсказуемые результаты, необходимые для построения компонентов низкого уровня системы.

Поскольку формат очень простой, разработчики могут создавать архивы CPIO, используя только оболочные скрипты без сложных библиотек.

Можно ли восстановить поврежденный архив CPIO?

Незначительные повреждения иногда можно обойти, используя снисходительные извлекатели, но CPIO не имеет записей восстановления, что делает глубокое восстановление сложным.

Если повреждён только слой сжатия, частичное восстановление иногда возможно после декомпрессии.

Серьезное повреждение заголовка часто делает весь поток нечитаемым из-за последовательной природы формата.

Почему некоторые файлы CPIO вызывают ошибки 'неправильный заголовок'?

Архив может использовать вариант, не поддерживаемый инструментом извлечения, например, бинарные и новые ASCII форматы.

Некоторые скрипты сборки случайно генерируют файлы нулевой длины или неправильные поля размера файла, что нарушает парсинг.

Неправильное сжатие уже сжатого CPIO может привести к остаточным данным, которые сбивают с толку декомпрессор.

Почему CPIO часто встречается в дампах прошивки и встроенных системах?

Embedded Linux systems frequently use minimalistic root filesystems compressed into CPIO format due to its predictable unpacking behavior.

Производители оборудования выбирают CPIO, потому что он устраняет необходимость в сложных утилитах декомпрессии в ранних прошивках загрузки.

Это позволяет легко комбинировать образы ядра, скрипты и базовые системные файлы в один пакет, который легко воспринимается загрузчиками.

Почему некоторые извлекатели показывают обрезанные имена файлов в архивах CPIO?

Старые форматы CPIO имели строгие ограничения на длину имени файла, которые современные системы могут по-прежнему применять при извлечении.

Несоответствия в кодировке — особенно между ASCII архивами и системами UTF-8 — могут вызывать повреждение имен файлов.

Некоторые архивы были сгенерированы устаревшими инструментами, которые предшествовали современным файловым системам.

Как CPIO сравнивается с TAR в современных рабочих процессах?

TAR более универсально принят для общего архивирования, в то время как CPIO сохраняется в основном в системных и сборочных процессах.

CPIO предоставляет более предсказуемый вывод в контексте автоматизации, в то время как TAR предлагает более широкую совместимость и функции.

Для большинства задач, ориентированных на пользователя, предпочтителен TAR, но для initramfs, RPM-пакетов и воспроизводимых сборочных систем CPIO по-прежнему превосходит.

Является ли CPIO устаревшим?

While old, CPIO remains actively used in Linux internals and enterprise systems, meaning it’s not obsolete within those domains.

Его простота, детерминированный вывод и совместимость делают его трудным для замены в процессах загрузки и упаковки системы.

Однако для повседневного архивирования современные форматы, такие как TAR, ZIP или 7Z, гораздо более практичны.

Следует ли использовать CPIO в современных рабочих процессах?

Use CPIO when building initramfs images, working with RPM payloads, or interacting with embedded Linux environments.

Он также полезен для воспроизводимых сборок и простого создания архивов на основе скриптов.

Для общего сжатия или кроссплатформенного обмена файлами выбирайте TAR, ZIP или 7Z вместо этого.