Konvertieren Sie G4-Dateien kostenlos

Professionelles G4-Dateikonvertierungstool

Legen Sie Ihre Dateien hier ab

oder klicken Sie, um Dateien zu durchsuchen

Maximale Dateigröße: 100MB
10M+ Dateien konvertiert
100% Für immer kostenlos
256-Bit Sichere Verschlüsselung

Unterstützte Formate

Konvertieren Sie zwischen allen gängigen Dateiformaten in hoher Qualität

Webformate

JPG

Joint Photographic Experts Group - the most universal image format for photographs using lossy compression. Reduces file sizes 90-95% with minimal visible quality loss. No transparency support. Perfect for photos, web images, email attachments, and any scenario requiring small file sizes. Adjustable quality levels from 1-100. Standard since 1992 with universal device and software support. Ideal for photographs and complex images with many colors.

PNG

Portable Network Graphics - lossless image format supporting transparency and 16 million colors. Larger files than JPEG but perfect quality preservation. Supports alpha channel for smooth transparency. Excellent for logos, graphics with text, screenshots, and images requiring transparency. Better compression than GIF for photos. Perfect for web graphics, UI elements, and any image needing lossless quality or transparency. Standard format for web graphics since 1996.

WEBP

Web Picture format - modern image format by Google providing 25-35% smaller files than JPEG at equivalent quality. Supports both lossy and lossless compression plus transparency. Superior compression algorithms reducing bandwidth usage. Native browser support (96%+ coverage). Perfect for website optimization, web images, and reducing page load times. Combines best features of JPEG, PNG, and GIF. Recommended for modern web development.

GIF

Graphics Interchange Format - image format supporting animation and transparency with 256-color limitation. Small file sizes for simple images. Perfect for simple animations, emojis, memes, and graphics with few colors. Lossless for limited palette. Inefficient for photographs (use JPEG) or high-color graphics (use PNG). Universal support since 1987. Standard format for simple web animations and reaction images.

SVG

Scalable Vector Graphics - XML-based vector format rendering perfectly at any size. Infinitely scalable without quality loss or pixelation. Small file sizes for geometric shapes and illustrations. Editable with text editors and design software. Perfect for logos, icons, diagrams, and graphics requiring scaling. Supports animation and interactivity. Standard for responsive web graphics and resolution-independent designs. Essential format for modern web icons.

ICO

Icon File Format - specialized format for Windows icons containing multiple image sizes (16x16 to 256x256 pixels). Single file provides icons for all display resolutions. Used for favicons, application icons, and Windows shell icons. Supports transparency and multiple color depths. Perfect for website favicons, Windows program icons, and shortcut icons. Standard format for Windows icons since Windows 1.0. Essential for professional Windows applications.

AVIF

AV1 Image File Format - next-generation image format based on AV1 video codec providing better compression than WebP and JPEG. 20-50% smaller files at equivalent quality. Supports HDR, wide color gamut, and transparency. Cutting-edge compression technology. Growing browser support (85%+ and increasing). Perfect for future-proof web images and maximum efficiency. Better quality at smaller sizes than any previous format. Recommended for modern websites prioritizing performance.

BMP

Bitmap Image File - uncompressed raster format from Microsoft providing pixel-perfect quality with large file sizes. No compression means huge files (1MB+ for screenshots). Fast to load and display. Simple format with universal Windows support. Perfect for temporary graphics, screen captures, and scenarios where compression artifacts are unacceptable. Legacy format largely replaced by PNG. Convert to PNG or JPEG for practical use and storage.

TIFF

Tagged Image File Format - flexible format supporting multiple pages, layers, and various compression methods. Industry standard for professional photography, publishing, and archival. Supports lossless compression, 16-bit color depth, and extensive metadata. Large file sizes but excellent quality. Perfect for print publishing, photo archival, professional photography, and scenarios requiring maximum quality and flexibility. Used in medical imaging and professional scanning.

Professionelle Formate

PSD

Photoshop Document - Adobe Photoshop's native format preserving layers, effects, masks, and all editing capabilities. Supports 16-bit and 32-bit color depths for professional work. Large file sizes due to layer data and editing information. Perfect for ongoing design projects, professional photo editing, and collaborative design work. Not suitable for final output (export to JPEG/PNG). Essential format for professional graphic design and photo manipulation workflows. Industry standard for design files.

EXR

OpenEXR - high dynamic range image format developed by Industrial Light & Magic for visual effects and animation. Stores 16-bit or 32-bit floating-point values per channel enabling enormous dynamic range. Supports multiple layers, arbitrary channels, and lossless/lossy compression. Industry standard for VFX, CGI, and professional 3D rendering. Perfect for HDR photography, compositing, and scenarios requiring maximum color precision. Used extensively in film production and high-end visual effects.

HDR

High Dynamic Range Image - format storing luminance and color information with greater range than standard images. Captures and displays brightness levels impossible in JPEG/PNG. Uses 32-bit floating-point encoding. Perfect for realistic lighting in 3D rendering, environment maps, and HDR photography. Common in game development and architectural visualization. Enables realistic tone mapping and exposure adjustment. Essential for professional lighting workflows.

DDS

DirectDraw Surface - Microsoft texture format for games and 3D applications supporting compressed textures and mipmaps. Optimized for GPU loading with hardware-accelerated decompression. Stores multiple resolution levels (mipmaps) in single file. Standard format for game textures (DirectX, Unity, Unreal). Supports various compression algorithms (DXT1, DXT5, BC7). Perfect for game development, 3D modeling, and real-time rendering. Essential format for game asset pipelines.

TGA

Truevision TGA/Targa - raster graphics format supporting 8-32 bits per pixel with alpha channel. Uncompressed or RLE compressed for fast loading. Standard format for video editing, animation, and texture mapping. Excellent color accuracy with optional lossless compression. Perfect for video frame sequences, animation frames, and game textures. Widely supported in 3D software and video editing applications. Reliable format for professional media production.

JP2

JPEG 2000 - advanced image format using wavelet compression providing better quality than JPEG at equivalent file sizes. Supports lossless and lossy compression, progressive decoding, and ROI coding. Used in medical imaging, digital cinema, and archival. Better compression artifacts than JPEG. Slower encoding/decoding. Perfect for medical imaging, digital preservation, and applications requiring superior compression. Limited web browser support.

JPS

JPEG Stereo - stereoscopic 3D image format storing left and right eye views side-by-side or top-bottom. Based on standard JPEG with special arrangement for 3D viewing. Used for 3D photography, VR content, and stereoscopic displays. Compatible with 3D TVs and VR headsets. Perfect for 3D photography, stereoscopic content creation, and VR/AR applications. Requires special viewing equipment for proper 3D effect.

PFM

Portable Float Map - floating-point image format storing HDR color data. Simple format with 32-bit float values per channel. Used in computer graphics for HDR images and height maps. Uncompressed format with large file sizes. Perfect for HDR photography processing, displacement maps, and scientific imaging. Common in 3D rendering and simulation applications. Alternative to OpenEXR for simple HDR storage.

FTS

Flexible Image Transport System - scientific image format used primarily in astronomy. Stores astronomical images with extensive metadata headers. Supports multiple data arrays and tables. Standard format for astronomical data archives. Perfect for astronomical imaging, scientific data exchange, and research applications. Used by major observatories and space agencies worldwide. Essential format for astronomical research and data sharing.

Mobile Formate

HEIC

High Efficiency Image Container - Apple's modern image format using HEVC compression providing 50% smaller files than JPEG at equivalent quality. Default format for iOS photos since iOS 11. Supports HDR, transparency, and image sequences. Excellent quality with tiny file sizes. Limited compatibility outside Apple ecosystem. Convert to JPEG for broad sharing. Perfect for iOS photography and Apple device storage optimization. Future-oriented format gaining broader support.

HEIF

High Efficiency Image Format - container format using HEVC or other compression methods. More versatile than HEIC supporting various codecs. Supports image sequences, burst photos, and depth maps. Used by Apple devices and modern cameras. Better compression than JPEG with smaller file sizes. Perfect for modern photography, image sequences, and efficient storage. Growing support across platforms and devices.

JPEG

Joint Photographic Experts Group - standard JPEG variant with .jpeg extension instead of .jpg. Identical format and capabilities to JPG files. Same lossy compression and universal compatibility. Used interchangeably with .jpg extension. Perfect for all scenarios where JPG is appropriate. No technical difference from JPG format. Extension preference varies by platform and tradition.

JPE

JPEG Image - alternative JPEG file extension used less commonly than .jpg or .jpeg. Identical format and compression to standard JPEG. Full compatibility with all JPEG-supporting software. Occasionally used by older Windows systems. Perfect for any JPEG use case. Convert to .jpg for broader recognition. No technical differences from standard JPEG format.

JFIF

JPEG File Interchange Format - JPEG variant with specific structure for data exchange. Standard way to encode JPEG for maximum compatibility. Includes specific header markers and color space definitions. Ensures consistent JPEG interpretation across platforms. Perfect for reliable JPEG exchange and archival. Most JPEGs actually use JFIF structure. Technical specification ensuring JPEG interoperability.

JFI

JPEG File Interchange - alternative extension for JFIF-compliant JPEG files. Same format and capabilities as standard JPEG/JFIF. Used occasionally by specific software and systems. Perfect compatibility with all JPEG viewers. Perfect for any JPEG application. Consider using .jpg for better recognition. Functionally identical to standard JPEG format.

JIF

JPEG Interchange Format - another extension variant for JPEG images. Identical compression and structure to standard JPEG. Full compatibility with JPEG software. Rarely used compared to .jpg extension. Perfect for standard JPEG use cases. Rename to .jpg for universal recognition. No technical distinction from regular JPEG files.

Rohformate

RGB

Raw RGB - uncompressed raw red-green-blue color data without headers or metadata. Pure pixel data requiring width/height specification for viewing. Maximum quality with enormous file sizes. Used in image processing pipelines and professional workflows. Perfect for image processing intermediates, scientific imaging, and maximum quality requirements. Requires external dimension information. Essential for professional image manipulation workflows.

RGBA

Raw RGBA - uncompressed RGB data with alpha channel for transparency. Four channels (red, green, blue, alpha) without compression. Requires dimension specification for proper viewing. Huge file sizes due to no compression. Perfect for image processing with transparency, compositing workflows, and professional graphics. Used in video production and game development. Maximum quality preservation with alpha information.

RGBO

RGB with Opacity - variant of RGB format including opacity/transparency information. Uncompressed pixel data with alpha channel. Used in specific graphics workflows and professional software. Requires external dimension data. Perfect for professional compositing, graphics production, and transparency workflows. Alternative to RGBA in some applications. Maintains maximum quality with transparency.

RGF

Raw Graphics Format - uncompressed raw image data used in specific professional workflows. Simple binary format without metadata headers. Requires dimension and color space information for proper viewing. Used in specialized imaging applications and scientific software. Perfect for image processing pipelines, scientific imaging, and professional graphics workflows. Maximum quality with minimal file structure.

YUV

YUV Color Space - raw format storing luminance (Y) and chrominance (U, V) separately. Used extensively in video processing and broadcast. More efficient than RGB for human vision. Common in video codecs and professional video equipment. Perfect for video frame extraction, broadcast workflows, and video processing. Essential format in television and video production. Enables efficient compression in video codecs.

UYVY

UYVY Color Format - packed YUV format with specific byte ordering (U, Y, V, Y). Common in video capture and professional video equipment. Interleaved chroma and luma for efficient processing. Used by video capture cards and cameras. Perfect for video frame processing, capture workflows, and broadcast applications. Standard format in professional video equipment. Optimized for hardware video processing.

Unix Formats

XPM

X PixMap - ASCII-based image format for X Window System icons. Human-readable C source code format. Simple format for small icons and cursors. Used primarily on Unix/Linux systems. Perfect for X Window icons, cursors, and small graphics on Unix systems. Can be compiled directly into programs. Legacy format still found in Linux applications.

XBM

X BitMap - monochrome bitmap format for X Window System. ASCII format representing black and white images. Used for cursors, icons, and simple graphics on Unix/Linux. Very small file sizes for 1-bit images. Perfect for X Window cursors, monochrome icons, and simple Unix graphics. C language header file format. Historic Unix/Linux bitmap format.

XWD

X Window Dump - screen capture format for X Window System. Stores complete window or screen contents with color information. Native X11 format for screenshots and window captures. Includes X server-specific information. Perfect for X Window screenshots, Unix screen captures, and X11 debugging. Used primarily on Unix/Linux systems. Standard screenshot format for X-based systems.

XV

XV Thumbnail - image format for XV image viewer on Unix systems. Used for thumbnail caches and quick previews. Simple format optimized for fast loading. Associated with the xv image viewer application. Perfect for XV image viewer thumbnails and Unix image browsing. Legacy format from classic Unix graphics software. Found in older Unix image management systems.

SUN

Sun Raster - image format from Sun Microsystems for SunOS and Solaris systems. Supports various color depths and compression methods. Standard format on Sun workstations and servers. Used extensively in scientific and engineering applications on Sun systems. Perfect for legacy Sun system compatibility and Solaris applications. Historical importance in Unix workstation graphics. Convert to modern formats for current use.

SGI

Silicon Graphics Image - professional image format from SGI workstations. Supports RGB and RGBA with RLE compression. Used extensively in computer graphics and visual effects. Standard format on SGI/IRIX systems. Perfect for legacy SGI compatibility, professional graphics workflows, and film production archives. Historical significance in 3D graphics evolution. Used in early CGI and digital effects.

RAS

Sun Raster Image - another extension for Sun Raster format. Same capabilities as .sun format. Used on Sun Microsystems systems and Solaris. Supports various color depths and optional RLE compression. Perfect for Sun/Solaris compatibility and legacy system support. Alternative extension to .sun files. Convert to modern formats for broader compatibility.

Portable Formate

PPM

Portable PixMap - simple uncompressed RGB format from Netpbm suite. Human-readable ASCII or binary format. Maximum portability across platforms. No compression leading to large files. Perfect for image processing intermediates, Unix graphics workflows, and maximum portability. Part of portable pixmap family. Extremely simple format ensuring universal compatibility.

PBM

Portable BitMap - monochrome format from Netpbm suite. ASCII or binary format for black and white images. Simplest possible image format. Perfect for monochrome graphics, fax images, and simple bitmap data. Extremely portable and easy to generate programmatically. Part of Netpbm image family. Used in document scanning and OCR workflows.

PGM

Portable GrayMap - grayscale format from Netpbm suite. ASCII or binary format for grayscale images. Simple structure ensuring maximum portability. No compression. Perfect for grayscale photography, scientific imaging, and image processing. Part of portable pixmap family. Used extensively in image processing education and research.

PNM

Portable Any Map - generic format encompassing PBM, PGM, and PPM. Automatically handles monochrome, grayscale, or color images. Most flexible Netpbm format. Perfect for general-purpose portable image storage and Unix graphics workflows. Universal format in Unix image processing. Enables format-agnostic image handling.

PAM

Portable Arbitrary Map - extended Netpbm format supporting alpha channels and arbitrary color depths. More capable than PBM/PGM/PPM with similar simplicity. Supports transparency and high bit depths. Perfect for modern portable image workflows with transparency. Extended Netpbm format for contemporary needs. Maintains Netpbm simplicity with modern features.

Legacy-Formate

PCX

PC Paintbrush - legacy DOS graphics format from ZSoft Corporation. Standard image format in DOS era (1980s-1990s). Supports various color depths and RLE compression. Common in early Windows applications. Perfect for DOS/early Windows compatibility and retro computing. Historical importance in PC graphics evolution. Convert to modern formats for current use.

PICT

Apple Picture - legacy Macintosh graphics format (Mac OS Classic). Supported both bitmap and vector graphics. Native format for Classic Mac applications. Obsolete with Mac OS X transition. Perfect for recovering images from vintage Mac systems. Historical format important for Mac archive access. Convert to modern formats for usability.

PCT

PICT Image - alternative extension for Apple PICT format. Same capabilities as .pict files. Used on Macintosh systems before Mac OS X. Supports bitmap and vector data. Perfect for Classic Mac compatibility and vintage system recovery. Alternative extension to .pict. Legacy format requiring conversion for modern use.

PCD

Kodak Photo CD - proprietary format for Kodak Photo CD system. Stores images at multiple resolutions in single file. Used by Kodak for photo scanning and archival services. Includes multiple resolution layers for different uses. Perfect for Photo CD archive access and Kodak imaging system compatibility. Legacy professional photography format. Historical importance in digital photography transition.

PDB

Palm Database Image - Palm OS format for storing images on Palm PDAs. Compressed format optimized for small devices. Used on Palm Pilot and related handhelds. Legacy format from PDA era (1990s-2000s). Perfect for Palm device compatibility and vintage PDA recovery. Historical format from handheld computing. Convert to modern formats for accessibility.

PALM

Palm Pixmap - bitmap format for Palm OS devices. Optimized for Palm handheld screens and memory limitations. Simple format with limited color depths. Used on Palm PDAs and early smartphones. Perfect for Palm OS compatibility and retro PDA applications. Legacy format from handheld era. Important for Palm device emulation and archival.

CUR

Windows Cursor - format for Windows mouse cursor images. Contains hotspot information defining click point. May include multiple sizes for different resolutions. Used for custom cursors in Windows applications. Perfect for Windows cursor design, custom mouse pointers, and UI development. Standard format for Windows cursors since Windows 1.0. Essential for Windows UI customization.

Spezialisierte Formate

VIPS

VIPS Image - format for libvips image processing library. Supports large images and streaming operations. Optimized for efficient memory usage with huge images. Used in image processing pipelines and server-side imaging. Perfect for processing large images, batch operations, and memory-efficient workflows. Essential for server-side image processing. Specialized format for libvips ecosystem.

VIFF

Visualization Image File Format - image format for Khoros visualization software. Supports various data types and multi-dimensional images. Used in scientific visualization and image processing research. Includes extensive metadata capabilities. Perfect for scientific imaging, visualization workflows, and research applications. Specialized format for Khoros system. Used in academic image processing.

MNG

Multiple-image Network Graphics - animated image format related to PNG. Supports animation with better compression than GIF. PNG-based animation format with advanced features. Limited browser support compared to GIF. Perfect for complex animations with transparency. Better quality than animated GIF. Superseded by APNG and WebP for most uses.

MTV

MTV Raytracer - image format for MTV raytracing software. Simple format for raytraced images. Used by MTV raytracer program on Unix systems. Academic and research format from computer graphics education. Perfect for MTV raytracer compatibility and computer graphics education. Specialized format from raytracing software. Legacy format from graphics research.

WBMP

Wireless Bitmap - monochrome format for early mobile phones and wireless devices. Optimized for limited bandwidth and memory. Used in WAP (Wireless Application Protocol) era. Tiny file sizes for 1-bit images. Perfect for legacy mobile device compatibility. Historical format from early mobile web. Obsolete with modern smartphones.

PGX

JPEG 2000 Reference - format for JPEG 2000 development and testing. Simple format for individual image components. Used in JPEG 2000 codec development and testing. Perfect for JPEG 2000 research, codec testing, and format development. Specialized format for image compression research. Used in academic and standards work.

PAL

Palette File - color palette/colormap format used by various graphics software. Stores color lookup tables for indexed images. Used with indexed color images and sprite graphics. Perfect for game development, pixel art workflows, and indexed color management. Common in retro game development. Essential for palette-based graphics.

MAP

Colormap - another palette format storing color lookup tables. Used by various graphics applications for indexed colors. Defines available colors for indexed images. Perfect for indexed color workflows, game development, and palette management. Common in graphics software and game development tools. Used with palette-based image formats.

Fax- und Druckformate

FAX

Fax Image - format for fax machine documents. Monochrome format optimized for text documents. Uses efficient compression for black and white pages. Standard format for fax transmission and storage. Perfect for fax document archival, legacy fax system compatibility, and document scanning. Used in telecommunications and document management. Essential for fax machine compatibility.

G3

CCITT Group 3 Fax - standard fax compression format (one-dimensional). Efficient compression for black and white documents. Standard for fax transmission worldwide. One-dimensional compression algorithm. Perfect for fax documents, scanned text pages, and telecommunications. Used in virtually all fax machines. Essential standard for fax communication.

G4

CCITT Group 4 Fax - advanced fax compression format (two-dimensional). Better compression than G3 for text documents. Higher quality fax transmission. Two-dimensional compression for superior efficiency. Perfect for high-quality fax, document archival, and scanning workflows. Recommended fax format for quality and file size. Standard for modern fax systems.

JBG

JBIG - bilevel image compression standard for high-resolution black and white images. Superior compression to G3/G4 fax formats. Used in document scanning and archival. Progressive coding enabling resolution scaling. Perfect for high-resolution document scanning, archival imaging, and efficient black and white compression. Successor to G3/G4. Used in professional document management.

JBIG

JBIG Image - alternative extension for JBIG compressed images. Same capabilities as .jbg format. Efficient bilevel compression for documents. Used in document imaging and scanning applications. Perfect for high-quality document compression, scanning workflows, and archival systems. Alternative extension to .jbg files. Professional document imaging format.

Retro-Formate

SIXEL

Sixel Graphics - bitmap format for DEC terminals and printers. Uses six-pixel vertical slices encoded as characters. Historic format from DEC terminal era (1970s-1980s). Enabled graphics on text-only terminals. Perfect for terminal graphics, retro computing, and DEC system compatibility. Legacy format with nostalgic significance. Used in terminal emulators for retro graphics.

SIX

SIX Format - alternative extension for Sixel graphics. Same capabilities as .sixel format. DEC terminal graphics format. Used for graphics on VT terminals. Perfect for DEC terminal compatibility and vintage system emulation. Alternative extension to .sixel files. Historical format from terminal graphics era.

HRZ

Slow Scan TV - format for amateur radio slow-scan television. Transmits images over radio frequencies. Used in amateur radio for image transmission. Simple format optimized for radio transmission. Perfect for ham radio SSTV applications and radio image exchange. Specialized format for radio amateurs. Important in amateur radio communication.

IPL

IPLab Image - format for IPLab image analysis software. Used in scientific image processing and analysis. Supports various data types and metadata. Common in microscopy and scientific imaging. Perfect for IPLab software compatibility, scientific image analysis, and microscopy workflows. Specialized format for image analysis software. Used in scientific research.

PICON

Personal Icon - small icon format for email and newsgroups. 48x48 pixel images representing people in directories. Used in academic and early internet systems. Perfect for personal icon databases and vintage internet systems. Historical format from early internet era. Legacy format for academic systems.

OTB

On-the-air Bitmap - format for Nokia phones and wireless devices. Used in mobile phone applications and services. Simple bitmap format for limited devices. Perfect for Nokia device compatibility and vintage mobile applications. Legacy format from early mobile phones. Historical format from pre-smartphone era.

So konvertieren Sie Dateien

Laden Sie Ihre Dateien hoch, wählen Sie das Ausgabeformat aus und laden Sie die konvertierten Dateien sofort herunter. Unser Konverter unterstützt die Batch-Konvertierung und erhält die hohe Qualität.

Häufig gestellte Fragen

Was ist eine G4-Datei und warum wurde dieses Format erstellt?

Eine G4-Datei ist ein Bild, das mit dem CCITT Group 4 (G4) Faxkompressionsstandard codiert ist. Es wurde als Nachfolger von Gruppe 3 erstellt und bietet eine deutlich schnellere und effizientere Kompression für monochrome gescannte Dokumente. Im Gegensatz zu G3 – das sowohl 1D- als auch 2D-Codierung erlaubte – verwendet G4 reine 2D-Kompression, die Muster zwischen Scanlinien referenziert, um die Dateigrößen drastisch zu reduzieren und gleichzeitig die Lesbarkeit der Textqualität zu erhalten.

G4 wurde zum Standard für Hochgeschwindigkeitsdigitalfaxen, Unternehmensdokumentenscanning und Archivierungssysteme, die kompakte, aber hochgenaue Schwarz-Weiß-Reproduktionen benötigten. Heute bleibt es entscheidend innerhalb von TIFF-G4-Dateien, die von Scannern und Unternehmensbildsystemen verwendet werden.

Wie ist eine G4-Datei intern strukturiert?

G4-Dateien verwenden eine starre und hochoptimierte Struktur, die für Geschwindigkeit und Kompression ausgelegt ist:

1-Bit Monochromformat

Jeder Pixel ist strikt schwarz oder weiß. Diese Einschränkung ermöglicht hohe Kompression und eine vorhersehbare Struktur.

Reine 2D Modifizierte READ-Codierung

G4 verwendet immer die 2D-Zeilen-für-Zeilen-Codierung, die Unterschiede zwischen den Linien referenziert, um wiederholte Muster zu reduzieren.

Keine End-of-Line-Markierungen

Im Gegensatz zu G3 fügt G4 keine EOL-Markierungen ein, da die 2D-Struktur die Notwendigkeit beseitigt und somit die Größe weiter reduziert.

Feste Telefaxauflösungen

Übliche Scanbreiten sind 1728, 2048 und 2432 Pixel pro Linie, die historischen Faxauflösungen entsprechen.

Diese Struktur macht G4 extrem effizient und robuster als G3 beim Komprimieren von Textdokumenten.

Wo werden G4-Dateien heute verwendet?

G4-Codierung wird immer noch stark in modernen Unternehmenssystemen verwendet:

TIFF G4 Dokumentenscanner

Die meisten Büroscanner exportieren monochrome Scans unter Verwendung der Gruppen-4-Kompression innerhalb von TIFF-Containern.

Unternehmensarchivierungssysteme

Banken, Gerichte und medizinische Einrichtungen archivieren Jahrzehnte von Dokumenten im TIFF-G4-Format.

Telekommunikations-Backends

Digitale Faxserver konvertieren häufig eingehende Seiten in G4 zur Speichereffizienz.

Regierungs- und Strafverfolgungsbehörden

Regulierte Branchen vertrauen G4 für die langfristige Aufbewahrung von Formularen und gescannten Aufzeichnungen.

OCR-Pipelines

OCR-Systeme verarbeiten häufig G4-basierte TIFFs aufgrund ihrer scharfen monochromen Textergebnisse.

Rechtliche und Compliance-Workflows

Viele Gerichte akzeptieren nur gescannte Dokumente im TIFF-G4-Format für Konsistenz.

Niedrigbandbreiten-Übertragungssysteme

Obwohl weniger verbreitet, wird G4 immer noch in spezialisierten Kommunikationssystemen mit Bandbreitenbeschränkungen verwendet.

Selbst mit modernen Bildformaten bleibt G4 aufgrund seiner Zuverlässigkeit und der geringen Dateigröße weit verbreitet.

Warum erscheinen einige G4-Bilder extrem scharf, aber mit geringer Tiefe?

G4 ist auf 1-Bit-Monochrom beschränkt, sodass alle subtilen Schattierungen oder Graustufeninformationen verloren gehen.

Diese Schärfe ist beabsichtigt – G4 wurde für klare Texte optimiert, nicht für fotografische Details.

Dokumente, die auf Schattierungen, Stempeln oder Farbverläufen basieren, können grob oder stark dithered erscheinen.

Wie schneidet G4 im Vergleich zu G3, TIFF G4 und PDF ab?

Im Vergleich zu G3 ist G4 erheblich stärker komprimiert, schneller zu dekodieren und konsistenter, da es immer 2D-Codierung verwendet.

TIFF G4 ist im Wesentlichen G4-Daten, die in einem TIFF-Wrapper mit Seitenstruktur und Metadatenunterstützung gespeichert sind.

PDF kann G4-Bilder direkt einbetten, fügt jedoch Textebenen, Metadaten, Schriftarten und Strukturen hinzu, die in eigenständigen G4-Streams nicht verfügbar sind.

Unterstützt das G4-Format Graustufen, Farbe oder Transparenz?

Nein – G4 unterstützt nur Schwarz- und Weißpixel.

Es gibt keine Unterstützung für Alpha-Kanäle, und keine Graustufen- oder RGB-Informationen können gespeichert werden.

Jede Graustufen-Eingabe muss vor der Kodierung geschwellen oder gedithert werden.

Warum weigern sich einige Programme, G4-Dateien zu öffnen?

Viele Anwendungen erwarten, dass die G4-Kompression in TIFF eingebettet ist, anstatt in einem Roh-.g4-Stream.

Einige G4-Dateien lassen dimensionale Metadaten weg, was manuelle Breiten-/Höhenangaben für die Dekodierung erforderlich macht.

Nicht alle Viewer unterstützen die reine CCITT-Gruppe 4-Dekodierung, insbesondere leichte oder webbasierte Viewer.

Warum schlagen G4-Konvertierungen manchmal fehl?

Konvertierungsfehler resultieren normalerweise aus Einschränkungen aus der Fax-Ära:

Dimensionale Mehrdeutigkeit

Roh-G4-Dateien fehlen oft intrinsische Breite/Höhe, was Konvertierungstools zwingt, zu raten oder manuelle Eingaben zu verlangen.

Strenge binäre Anforderungen

G4 kann nur reine Schwarz-Weiß-Bilder akzeptieren; Farbe oder Graustufen müssen zuerst konvertiert werden.

Nicht-standardisierte Linienkodierungen

Einige Telekom-Anbieter führten proprietäre Variationen ein, die mit generischen Dekodierern inkompatibel sind.

Ungewöhnliche Linienbreiten

Ältere Faxsysteme verwendeten manchmal ungewöhnliche Auflösungen, die moderne Tools nicht erwarten.

Headerlose Bitströme

Viele .g4-Dateien sind roh kodierte Streams, die keine Metadaten enthalten, was eine automatisierte Konvertierung erschwert.

Tools like ImageMagick, Ghostscript, and fax utilities handle G4 better than generic image editors.

Unterstützt G4 Metadaten oder Mehrbit-Tiefe?

Nein – rohe G4-Streams enthalten keine Metadaten jeglicher Art.

TIFF-G4 fügt Metadatenebenen hinzu, aber die Kompression selbst speichert keine zusätzlichen Felder.

G4 kann intern keine Graustufen-, DPI-Informationen, Zeitstempel oder Farbräume kodieren.

Welche modernen Anwendungen hat G4 noch?

G4 spielt weiterhin eine wichtige Rolle in mehreren Bereichen:

Großangelegte Dokumentenarchivierung

Massen-Digitalisierungsprojekte verwenden TIFF-G4, um Millionen von gescannten Seiten kompakt zu speichern.

Anforderungen von Gerichten und Rechtssystemen

Viele Jurisdiktionen verlangen TIFF-G4 für Beweismittel und gescannte rechtliche Einreichungen.

OCR und maschinelles Lernen

OCR-Systeme verlassen sich auf scharfe Schwarz-Weiß-G4-Bilder für eine verbesserte Textextraktionsleistung.

Telekom-Fax-Gateways

Digitale Faxserver konvertieren Seiten häufig in G4 für eine kompakte Speicherung.

Unix Imaging Tools

ImageMagick, NetPBM, and Ghostscript have strong support for G4 for document processing.

Niedrigaufwendige Archivierungs-Workflows

Die geringen Dateigrößen von G4 senken die Speicherkosten für massive Unternehmensarchive.

Unternehmens- und medizinische Aufzeichnungen

Krankenhäuser und Versicherungsgesellschaften verwenden weiterhin TIFF-G4 für hochgeschwindigkeits Scanning-Workflows.

Forensische Dokumentenanalyse

Ermittler analysieren Geräuschmuster und Kodierverhalten in originalen G4-Scans.

Fax-Wiedergabesysteme

Entwickler verwenden G4-Streams, um das Verhalten der Faxübertragung zu testen und zu simulieren.

Langfristige digitale Archivierung

Aufgrund seiner Einfachheit und garantierten Lesbarkeit bleibt G4 ein archivierungsfreundliches Format.

Warum sind G4-Dateien so klein?

G4 verwendet eine hocheffiziente 2D-Kompression, die redundante Muster zwischen Scanlinien eliminiert.

Es werden nur 1-Bit-Daten gespeichert, was die Speicheranforderungen drastisch reduziert.

Es werden keine Farbkanäle, Metadaten oder Containerstrukturen hinzugefügt.

Wie groß kann eine G4-Datei werden?

Die meisten G4-Seiten bleiben unter 30–50 KB, selbst bei vollständigen A4- oder Letter-Dokumenten.

Dichte Texte oder komplexe Diagramme erzeugen leicht größere Dateien, bleiben jedoch im Vergleich zu modernen Scans kompakt.

Nur mehrseitige TIFF-G4-Archive werden aufgrund der Seitenanzahl groß, nicht aufgrund von Kompressionseffizienz.

Unterstützt G4 mehrseitige Dokumente?

Nein – rohe G4-Dateien enthalten genau eine Seite.

Die mehrseitige Speicherung erfolgt durch das Einpacken mehrerer G4-Streams in TIFF.

Fax-Systeme übertrugen Seiten einzeln, kompilieren sie jedoch extern.

Warum erscheinen einige G4-Bilder verzerrt oder gestreckt?

G4 basiert auf nicht quadratischen Pixelauflösungen aus der Fax-Ära; falsche DPI-Behandlung kann Bilder verzerren.

Einige Viewer verwenden standardmäßig quadratische Pixel, was die beabsichtigte Fax-Geometrie falsch darstellt.

Headerlose Streams erfordern manuelle Eingaben von DPI und Breite/Höhe, um korrekt angezeigt zu werden.

Ist das G4-Format heute noch relevant?

Ja – G4 bleibt die dominierende Kompression, die in Unternehmensscannern und rechtlichen Dokumentenarchiven verwendet wird.

Seine unglaublich kleine Größe und vorhersehbare Struktur machen es ideal für die langfristige Dokumentenarchivierung.

Obwohl es sich nicht für Fotos oder Farbabbildungen eignet, gedeiht G4 weiterhin in medizinischen, rechtlichen, Telekommunikations- und Archiv-Workflows.